The WOMEN's

 Health AND AgING STUDYNational Institutes of Health

National Institute on
Aging

Health and

SOCIAL
Characteristics
OF Older
WOMEN WITH
Disability

The Women's Health and Aging Study

Health and Social Characteristics of Older Women with Disability

Editors: Jack M. Guralnik, M.D., Ph.D., Linda P. Fried, M.D., M.P.H., Eleanor M. Simonsick, Ph.D., Judith D. Kasper, Ph.D., Mary E. Lafferty

Associate Editors: Marcel E. Salive, M.D., M.P.H., Caroline L. Phillips, M.S., Josephine V. Cruz, M. Chiara Corti, M.D., Ph.D., Luigi Ferrucci, M.D., Ph.D., Marco Pahor, M.D., Dwight D. Brock, Ph.D., Elizabeth A. Skinner, M.S.W.

National Institutes of Health
National Institute on Aging
NIH Publication No. 95-4009

The National Institute on Aging wishes to acknowledge the support of the Office of Research on Women's Health, Office of the Director, National Institutes of Health, in the publication of this monograph.

Suggested Citation: Guralnik JM, Fried LP, Simonsick EM, Kasper JD, Lafferty ME, eds. The Women's Health and Aging Study: Health and Social Characteristics of Older Women with Disability. Bethesda, MD: National Institute on Aging, 1995; NIH Pub. No. 95-4009.

You think we sit here empty, work done day gone Waiting for dark Or that we rattle drums, clash cymbals To hide the fear that we must go But inside the husks of age, there's breath Hearts that sound life's tocsin still Our minds still dream the dreams of youth
Love burns steady, not as fierce and careless
But calin and sure, deep as the ocean We still can wonder at God's creation Search out the truths that undergird The yeasty world around us Find new joys, discover new lands Tread new paths, mine new ores Our crutches, walkers, chairs, and canes Are badges of our determination To hold the fort of independence Against the forces that would lay us down Of course you'll live in worlds we'll never see But we've known things forever closed to you To walk a city's streets on summer evenings To leave doors unlocked, our windows open
To let our children wander free, perhaps Barefoot in the silky dust of unpaved streets To see the world around a friendly place Not a constant threat to life and health Perhaps you'll find when you grow old Life need not glitter to be gold.

Robert Drury
Catonsuille, Maryland

Contents

Acknowledgements viii
Contributors ix
Foreword xii
Terrie T. Wetle, Richard J. Havlik
Introduction 1
Linda P. Fried, Judith D. Kasper, Jack M. Guralnik,Eleanor M. Simonsick
Chapter 1 Screening the Community-Dwelling Population 9 for Disability
Jack M. Guralnik, Linda P. Fried, Eleanor M. Simonsick, Karen J. Bandeen-Roche, Judith D. Kasper
Chapter 2 Disability: The Spectrum of Function in 19
Moderately to Severely Disabled Older Women
Linda P. Fried, Judith D. Kasper, Eleanor M. Simonsick, Scott L. Zeger
Chapter 3 Adaptation to Disability 28
Jeff D. Williamson, Linda P. Fried
Chapter 4 Physical Performance Measures 35
Luigi Ferrucci, Jack M. Guralnik, Karen J. Bandeen-Roche, Mary E. Lafferty, Marco Pahor, Linda P. Fried
Chapter 5 The Daily Lives of Disabled Older Women 50
Eleanor M. Simonsick, Caroline L. Phillips,
Elizabeth A. Skinner, Donna Davis, Judith D. Kasper
Chapter 6 Utilization of Health Services, Insurance 70
Coverage, and Ability to Afford Care
Marcel E. Salive, Judith D. Kasper, Elizabeth A. Skinner, Sam Shapiro
Chapter 7 Instrumental and Emotional Support 77
Judith D. Kasper, Caroline L. Phillips,
Eleanor M. Simonsick, Pearl S. German
Chapter 8 Mental Health and General Well-Being 85
Judith D. Kasper, Eleanor M. Simonsick
Chapter $9 \quad$ Cardiovascular Diseases and Diabetes 96
M. Chiara Corti, Jeff D. Williamson, Caroline L. Phillips, Farida Rautaharju, Pentti M. Rautaharju, Luigi Ferrucci, Frederick L. Brancati, Linda P. Fried
Chapter 10 Exercise Tolerance and Body Composition 106
Eleanor M. Simonsick, Linda P. Fried
Chapter 11 Pulmonary Diseases and Conditions 118
Marcel E. Salive, Marco Pahor, Melvyn S. Tockman
Chapter 12 Musculoskeletal Disease 128
Marc C. Hochberg, M. Chiara Corti, Luigi Ferrucci, Jack M. Guralnik
Chapter 13 Neurological Conditions 140
Luigi Ferrucci, Steven J. Kittner, M. Chiara Corti, Jack M. Guralnik
Chapter 14 Vision and Hearing 152
Gary S. Rubin, Marcel E. Salive
Chapter 15 Medication Use 162
Marco Pahor, Marcel E. Salive, S. Lori Brown
Chapter 16 Hematologic, Biochemical, and Hormonal 169 Characteristics
Jeff D. Williamson, Patricia Maloney, Elizabeth A. Skinner, M. Chiara Corti, Frederick L. Brancati, Paul W. Ladenson, Jack M. Guralnik, Linda P. Fried
Appendix A Sample Design, Weighting and Estimation
Procedures, and Computation of SamplingErrorsAdam Chu, Carla E. Maffeo, Annie Lo, David Morganstein,Karen J. Bandeen-Roche, Judith D. Kasper, Dwight B. Brock
Appendix B Questionnaires Contents B-1
Screening questionnaire B-2
Baseline questionnaire B-8
Appendix C Interviewer's Physical Assessment C-1
Appendix D Home Physical Examination D-1
Appendix E Disease Ascertainment Algorithms E-1
Linda P. Fried, Judith D. Kasper, Jeff D. Williamson, Elizabeth A. Skinner, Carol D. Morris, and Marc C. Hochberg for the Disease Ascertainment Working Group
Appendix F Miscellaneous Forms
Disease surveillance forms mailed F-1
to physicians
Medical record abstract form F-3
Knee and hip X-ray reading forms F-15
Hand photograph scoring form F-17

Acknowledgments

The editors and authors wish to acknowledge the valuable contributions of the following persons to the Women's Health and Aging Study and the preparation of this book:

National Institute on Aging

Dr. Samuel Korper was the Acting Associate Director of the Epidemiology, Demography, and Biometry Program when this study was in its formative stages. He played a major role in its initial planning and helped bring it to life. Paulette Campbell has made numerous important contributions to the administration of the study and oversaw the production of this book. Armilda Quispe worked long hours in the final preparation of the tables. Paula Williams provided support for all aspects of the project. Steve Filano prepared the text for publication. John Sorkin provided valuable assistance in desktop publishing.

The Johns Hopkins University

Dr. Kathy J. Helzlsouer of the Johns Hopkins University School of Hygiene and Public Health, Dr. William W. Scott, Jr., of the Johns Hopkins University School of Medicine, and Dr. Susan J. Herdman, now of the University of Miami, made key scientific contributions to the study. Invaluable research assistance was provided by Elizabeth L. Solak. Management of the complex data base and programming support for this monograph and for ongoing analyses were performed by Dr. Elsbeth Chee, Jack A. Dagg, and Bryan D. Sayer. Critical administrative support for the day-to-day operations of the WHAS was ably provided by Angela M. Hill and Ray P. Burchfield.

Westat, Inc.

James Pennington, Senior Systems Manager, managed the development of the computerized (CAPI) versions of the questionnaires for baseline and followup and developed and managed the Westat data base. Susan K. Rogers, Research Nurse, worked with NIA and JHU staff to develop the home examination, wrote the manual and developed the training and quality control procedures for the home examination, and trained and supervised the study nurses. Christina Harrison, Field Director, assisted in the development of the questionnaire and interviewer manual for the baseline and assisted in interviewer training for the baseline. She managed the modification of the baseline questionnaire and training materials for the followup questionnaires and conducted followup training of interviewers. Susan Eddy and Giannella DeRienzo, Field Office Managers, were the office managers of the field office in Baltimore. They hired and supervised interviewers, developed office procedures and supervised the office staff. Jacqueline Slattery, Data Manager, managed the development and modification of specifications for the computerized (CAPl) version of the questionnaires for baseline and followup and managed the data preparation for the CAPI data and trained interviewers. Jacqueline Curtin, Data Preparation Supervisor, supervised the cleaning of the CAPI data. Glenn Harke, Data Preparation Manager, managed the development of coding manuals and procedures and the coding and cleaning of all hard copy data including the nurse's examination and the interviewer administered physical assessment data.

Contributors

Karen J. Bandeen-Roche, Ph.D.
Assistant Professor, Biostatistics
The Johns Hopkins University School of
Hygiene and Public Health
Baltimore, Maryland
Frederick L. Brancati, M.D.
Assistant Professor, Medicine and
Epidemiology
The Johns Hopkins University School of Medicine
Baltimore, Maryland
Dwight B. Brock, Ph.D.
Chief, Biometry Office
Epidemiology, Demography, and Biometry Program
National Institute on Aging
Bethesda, Maryland
S. Lori Brown, Ph.D., M.P.H.

Research Scientist Officer
Center for Devices and Radiologic Health
Epidemiology Branch
Food and Drug Administration
Rockville, Maryland
Adam Chu, Ph.D.
Senior Statistician
Westat, Inc.
Rockville, Maryland
M. Chiara Corti, M.D., M.H.S.

Visiting Fellow
Epidemiology, Demography, and Biometry
Program
National Institute on Aging
Bethesda, Maryland
Josephine V. Cruz
Computer Programmer
Epidemiology, Demography, and Biometry Program
National Institute on Aging
Bethesda, Maryland

Donna Davis, M.A.
Senior Study Director
Westat, Inc.
Rockville, Maryland
Luigi Ferrucci, M.D., Ph.D
Geriatrics Department, Hospital "I Fraticini"
National Institute for Research and Care of the Elderly (INRCA)
Florence, Italy
Linda P. Fried, M.D., M.P.H.
Principal Investigator, Women's Health and Aging Study
Associate Professor, Medicine and Epidemiology
The Johns Hopkins University School of Medicine
Baltimore, Maryland
Pearl S. German, Sc.D.
Professor Emerita
Department of Health Policy and Management
The Johns Hopkins University School of Hygiene and Public Health
Baltimore, Maryland
Jack M. Guralnik, M.D., Ph.D.
Project Officer, Women's Health and Aging Study
Chief, Epidemiology and Demography Office
Epidemiology, Demography, and Biometry Program
National Institute on Aging
Bethesda, Maryland
Richard J. Havlik, M.D., M.P.H.
Associate Director
Epidemiology, Demography, and Biometry Program
National Institute on Aging
Bethesda, Maryland

Marc C. Hochberg, M.D., M.P.H.
Professor, Medicine, Epidemiology and Preventive Medicine
Head, Division of Rheumatology and Clinical Immunology
University of Maryland School of Medicine
Baltimore, Maryland
Judith D. Kasper, Ph.D.
Co-Principal Investigator, Women's Health and Aging Study
Associate Professor, Department of Health Policy and Management
The Johns Hopkins University School of Hygiene and Public Health
Baltimore, Maryland
Steven J. Kittner, M.D., M.P.H.
Associate Professor
University of Maryland School of Medicine
Baltimore, Maryland
Paul W. Ladenson, M.D.
Associate Professor of Medicine
Director of Endocrinology and Metabolism
The Johns Hopkins University School of Medicine
Baltimore, Maryland
Mary E. Lafferty
Data Manager
Epidemiology, Demography, and Biometry Program
National Institute on Aging
Bethesda, Maryland
Annie Lo, M.S.
Statistician
Westat, Inc.
Rockville, Maryland
Carla E. Maffeo, Ph.D.
Vice President and Area Director, Health Studies Sector
Westat, Inc.
Rockville, Maryland

Patricia Maloney
Director, Corporate Medical Services
Corning Clinical Laboratories Inc.
Teterboro, New Jersey
David Morganstein, M.S.
Vice President and Director, Statistical Staff
Westat, Inc.
Rockville, Maryland
Carol D. Morris
Senior Medical Abstractor
The Johns Hopkins University School of Medicine
Baltimore, Maryland
Marco Pahor, M.D.
Assistant Professor of Gerontology
Catholic University
Rome, Italy
Caroline L. Phillips, M.S.
Computer Programmer Analyst
Epidemiology, Demography, and Biometry Program
National Institute on Aging
Bethesda, Maryland
Farida Rautaharju, Ph.D.
Research Associate, EPICARE Center
Department of Public Health Sciences
The Bowman Gray School of Medicine
Wake Forest University
Winston-Salem, North Carolina
Pentti M. Rautaharju, M.D., Ph.D.
Research Professor and Director, EPICARE Center
Department of Public Health Sciences
The Bowman Gray School of Medicine
Wake Forest University
Winston-Salem, North Carolina

Gary S. Rubin, Ph.D.
Associate Professor, Ophthalmology
The Johns Hopkins University School of Medicine
Baltimore, Maryland
Marcel E. Salive, M.D., M.P.H.
Epidemiologist
Epidemiology, Demography, and Biometry Program
National Institute on Aging
Bethesda, Maryland
Sam Shapiro
Professor Emeritus
Department of Health Policy and Management
The John Hopkins University School of Hygiene and Public Health
Baltimore, Maryland
Eleanor M. Simonsick, Ph.D.
Alternate Project Officer, Women's Health and Aging Study
Epidemiologist
Epidemiology, Demography, and Biometry Program
National Institute on Aging
Bethesda, Maryland
Elizabeth A. Skinner, M.S.W.
Research Associate, Department of Health Policy and Management
The Johns Hopkins University School of Hygiene and Public Health
Baltimore, Maryland

Melvyn S. Tockman, M.D., Ph.D.
Associate Professor, Environmental Health Science, Occupational Health, Medicine and Epidemiology
The Johns Hopkins University School of Hygiene and Public Health
Baltimore, Maryland
Terrie T. Wetle, Ph.D.
Deputy Director
National Institute on Aging
Bethesda, Maryland
Jeff D. Williamson, M.D., M.H.S.
Instructor, Medicine
The Johns Hopkins University School of Medicine
Baltimore, Maryland
Scott L. Zeger, Ph.D.
Professor, Biostatistics
The Johns Hopkins University School of Hygiene and Public Health
Baltimore, Maryland

Foreword

Terrie T. Wetle, Richard J. Havlik

The Women's Health and Aging Study (WHAS) is a major effort by the National Institute on Aging (NIA) to better understand the causes and course of disability in older women. Disability in later life is a serious health problem for women, threatening their independence and resulting in significant health care needs and expenditures. Although women live longer than men, they suffer disproportionately from disability and its consequences.

NIA's Epidemiology, Demography and Biometry Program initiated the WHAS through a contract with the Johns Hopkins University School of Medicine in 1991. The baseline screening assessed a representative sample of older women living in the community in Baltimore, Maryland, to identify those who were moderately to severely disabled, representing approximately the one-third most disabled women age 65 years and older. Baseline intensive study of the 1,002 disabled women who participated in the full evaluation was completed in early 1995. This monograph presents comprehensive data on health and social characteristics of these women. Followup of this cohort is ongoing.

The purpose of this monograph is to provide research and policy communities early access to some of the unique study methods and major baseline findings of this study. The descriptive data presented here offer an excellent overview of diseases and disability and their impact on older women. For investigators, the monograph is a resource for those who would like to use similar questionnaires and examination procedures. It gives policy makers ready access
to timely and detailed data they may need for today's discussion of long-term care and other issues affecting frail older people and their families. Finally, data presented here are a testament to the ability of older women with disabilities to function in the real world, as exemplified in Chapter 3 on adaptation to disability and in Chapter 5 on aspects of daily life.

We wish to acknowledge the excellent work of the editors and authors of this book and their timely publication of these data. We are especially pleased that the text and tables in this monograph will be available on the Internet for use by local and global audiences. We would particularly like to express appreciation to Drs. Linda Fried and Jack Guralnik, who chaired the WHAS Steering Committee meetings and facilitated the work of the large group of investigators and field staff who made important contributions to this study. The study has benefited greatly from the diverse group of collaborators from academia, the private sector, and government, including visiting scientists from abroad. Their expertise in geriatrics, epidemiology, physical disability, social psychology, survey methodology, biochemical markers, and clinical pharmacology has enhanced both the design and conduct of the project.

We believe that this report will be of benefit to a wide audience and will stimulate new analytic and research efforts. Ultimately, the WHAS has the potential to play an important role in the development of effective treatments and preventive strategies for physical disability in all older persons.

The Women's Health and Aging Study: An Introduction

Linda P. Fried, Judith D. Kasper, Jack M. Guralnik, Eleanor M. Simonsick

This monograph introduces the Women's Health and Aging Study (WHAS). The WHAS, funded by the National Institute on Aging, is a prospective, observational study of 1,002 women age 65 years and older who were moderately to severely disabled, but not severely cognitively impaired, at study entry. These women represent the approximately one-third most disabled older women living in the community. This monograph presents comprehensive information on their physical disability; health status, including disease and physiologic measures; health care and service utilization; and their daily lives. It also describes the representative population of women age 65 years and older from which the WHAS study population was drawn. These data were obtained from November 1992 to February 1995 during the baseline recruitment and evaluation of WHAS participants.

The goal of the WHAS is to determine the causes and course of physical disability. Using data from the baseline assessment, presented in this monograph, and from followup assessments performed every 6 months over 3 years, the study will:

1. Examine the natural history of physical disability;
2. Identify the major diseases and conditions responsible for physical disability;
3. Evaluate causes of changes in physical function over time, including both decline and improvement;
4. Assess the role of health care utilization, community, and informal services in modifying the course and severity of disability;
5. Identify subsets of disabled women at highest risk of progression of disability; and
6. Determine opportunities for secondary and tertiary prevention of disability.

This introduction provides a framework for the data presented in this monograph, including the significance of disability for older adults and for older women in particular, an overview of the design and methods of the WHAS, and a description of the areas of unique data offered by this study.

Background and Rationale for the WHAS: The Import of Disability in Older Women

The dramatic increases in life expectancy over the 20th century, the resulting increase in the older population, and the rising costs of long-term care have made age-associated disability and dependency matters of national concern. Overall, 40 percent of people age 70 years and older report limitations in their ability to carry on their usual activities (Cohen and Van Nostrand, 1995). According to the 1990 U.S. Census, among persons age 65 years and older, 16 percent have difficulty with basic mobility-related activities such as walking short distances, and 12 percent have difficulty with basic self-care tasks (LaPlante, 1993). Five to 8 percent of noninstitutionalized adults age 65 years and older receive help with one or more activities of daily living (ADLs) (Wiener et al., 1990). In addition to this disability in com-munity-dwelling older adults, 7 percent of people age 65 years and older reside in a nursing home,
including 8 percent of women and 5 percent of men (Feinleib et al., 1994). Ninety percent of these individuals are dependent in one or more ADLs (Hing et al., 1989). Clearly, disability and dependency are highly prevalent in older adults.

Disability in old age is associated with poor quality of life, dependence on formal and informal care providers, and often substantial medical and long-term care costs. In addition, disabled persons are at increased risk of other adverse health outcomes, including further declines in function (Branch et al., 1984; Manton, 1988), acute illnesses and injuries (Branch and Meyers, 1987; Fried and Bush, 1988), falls (Nevitt et al., 1989; Tinetti et al., 1986, 1988), recurrent hospitalization, and mortality (Branch, 1980; Corti et al., 1994; Koyano et al., 1986; Manton, 1988; Warren and Knight, 1982). The more severe the disability, the higher the risk of these outcomes. Successful prevention or delay of disability could make a substantial difference in health status and wellbeing, as well as in the care needs and care costs of the older population.

The high health care needs and costs of disabled older adults (Fried and Bush, 1988; Soldo and Manton, 1985) may result from the diseases that underlie disability, the severity of disease, and/or the presence of comorbid conditions. Recent research has added much to our understanding of the associations of specific diseases and comorbidity with physical disability. The major diseases reported to be associated with disability include heart disease, osteoarthritis, hip fracture, diabetes, intermittent claudication, stroke, chronic obstructive pulmonary disease, visual impairment, hearing impairment, depression, and cognitive impairment. Effective prevention requires an understanding of the types of disability caused by specific diseases, the mechanisms underlying the etiology of disability, the relationship between disease severity and the development and progression of disability, and the interactions of specific comorbid diseases.

The WHAS seeks to define these aspects of disability in older women for a number of reasons. Women make up the majority of the older popula-
tion, represent a larger proportion of the total population at each higher age, report higher rates of physical disability, and spend more years in a disabled state. They also make up a substantially larger proportion of the nursing home population and are more vulnerable in terms of need for formal and informal care because of their higher rate of widowhood, especially at the oldest ages. The burden of disability in older women has wideranging and profound effects on older women themselves, their families, and the health care system. While it was recognized in designing this study that potentially valuable male-female comparisons are sacrificed by examining women only, and that certain findings on the causes and course of disability in women may not hold true in men, the magnitude of the problem in women and the analytic power gained by studying women only made this a compelling focus.

In 1991, the Institute of Medicine of the National Academy of Sciences published the priorities for a national agenda for aging research (Lonergan and Krevans, 1991). Its first priority in three of five areas included research "on the causes, prevention, management, and rehabilitation of disability," "on the most important social and psychological techniques to maintain and improve . . . level of functioning among older persons," and on "the factors that determine the need for and use of long-term care" (Lonergan and Krevans, 1991, pp.1826-1827). The data from this study will provide important information, with a breadth and level of detail generally not available, that will aid the policy and scientific communities in addressing these issues.

Overview of the WHAS Design

The study population for the WHAS was obtained by drawing a random sample from the Health Care Financing Administration's Medicare enrollment file for the 32,538 women residing in 12 contiguous Zip Code areas in Baltimore. Maryland (see Figures I. 1 and I.2). This sampling frame represented all female Medicare beneficiaries as of September 1, 1992. An age-stratified (65-$74,75-84,85$ and older) random sample was se-
lected, yielding 6,521 women for screening to determine study eligibility (see Appendix A for details on sampling). The Health Care Financing Administration sent a letter to each woman describing the study. Two weeks later the study Principal Investigator (Linda P. Fried) sent a second letter inviting their participation. A study interviewer contacted women in their homes to administer the screening questionnaire and determine study eligibility. Women residing in nursing homes at the time of contact and those no longer living in the catchment area were not eligible for screening. (Some women who were listed on the Medicare files were found to be deceased.) Of those sampled, 5,316 women were eligible for screening: 1,179 women could not be located or contacted, or refused screening, and 4,137 women were screened.

The screening interview was designed to identify the approximately one-third most disabled older women living in the community. The approach used was derived from previous research in which factor analyses indicated a clustering of difficulty in certain tasks, such that difficulty in one task was associated with difficulty in the other tasks in the group (Fried et al., 1994). It was found that physical disability can be usefully categorized into four domains consisting of related tasks primarily associated with: (1) mobility and exercise tolerance; (2) upper extremity function; (3) higher functioning tasks (a subset of instrumental activities of daily living, not including heavy housework); and (4) basic self-care tasks (a subset of non-mobility dependent ADLs). Using this domain-oriented approach, evaluation of population-based data (1984 National Health Interview Survey data from the Supplement on Aging) indicated that individuals who reported difficulty in two, three, or four domains represented one-third of persons residing in the community (WHAS Manual of Operations, 1993). This conceptual approach and empirical analysis provided the basis for defining study eligibility, based on selfreport of difficulty in tasks in two or more domains of function (see Appendix B for screening instrument).

Details of screening and eligibility criteria are discussed in Chapter 1. In brief, of the 4,137 women age 65 years and older who were screened, 3,841 were able to complete the interview on their own, 1,409 met study eligibility criteria, and 1,002 agreed to participate in the study.

After signing an informed consent, study participants received an extensive interview in their homes. This interview ascertained many aspects of physical function and disability, including tasks affected, severity of difficulty or dependency, and adaptations to disabilities (Fried et al., 1991). Also assessed were history of physician diagnosis, symptoms and severity of over 20 diseases and conditions, current use of prescription and nonprescription medications, psychological functioning, social support and social networks, healthrelated behaviors, and health care and service utilization. The questionnaire for the baseline interview can be found in Appendix B. The interviewer also administered several performancebased measures of functioning (functional reach, lock and key, buttoning a blouse, using a telephone, visual memory, and block construction), and measured height, weight, and visual acuity (see Appendix C).

Two weeks later, by appointment, a trained nurse using a standardized protocol (see Appendix D) conducted a 4 - to 5 -hour examination of the study participant in her home. The goal of the examination was to validate the presence of specific diseases and physiologic states and to characterize their severity. The examination included the following: blood pressure and heart rate; anthropometry; electrocardiogram and auscultation of the heart and lungs; 4-hour ambulatory electrocardiogram; ankle:arm blood pressure ratio; assessment of musculoskeletal disease through examination of the joints and hand photographs; screening audiometry; and pulmonary function assessed statically using spirometry and dynamically using measurement of oxygen desaturation at rest and with exercise. The nurse also conducted the following performance-based measures

Figure I.1: Study design: The Women's Health and Aging Study

Figure I.2: Map of Baltimore Maryland, showing enrollment area Zip Codes: The Women's Health and Aging Study

in the home: semi-tandem, tandem, and side-byside stands as measures of static postural stability; strength measures: grip, pinch, and lower extremity strength assessed by dynamometry and upper arm strength by lifting a 10 -pound weight over the head; a 4 -meter measured walk at usual and rapid pace; single and five repeated chair stands; Purdue Pegboard; and, for those eligible, a graded exercise test (seated step test) while monitored.

Through supplemental funding from Corning Clinical Laboratories, the study also performed phlebotomy on participants who signed a separate informed consent; approximately 75 percent agreed to the procedure. A trained phlebotomist visited the participant's home, by appointment, and phlebotomy was performed following a standardized protocol. After initial processing, Corning Clinical Laboratories analyzed fresh blood specimens for hematologic, biochemical, and hormonal characteristics of participants. Merck Research Laboratories provided support for the creation and maintenance of a blood repository.

Detailed descriptions of the examination instruments and procedures are provided in the relevant chapters of this monograph.

A core element of this study was to characterize the prevalence of the major chronic diseases in older adults, with comparably rigorous ascertainment for each disease. To accomplish this, algorithms were established for each of 16 diseases, utilizing state-of-the-art epidemiologic and clinical criteria for the presence of disease. These algorithms and appropriate references are found in Appendix E. Disease presence was validated through self-report of physician diagnosis of disease, reported symptoms, signs or physiologic measures obtained in the nurse's examination, and medication use. These data were supplemented, as necessary, with confirmation of diagnosis through questionnaires completed by the participant's primary care physician (see Appendix F) and with ongoing surveillance of medical records.

Finally, a small subset of WHAS participants were invited to participate in the Weekly Disability Substudy, a 6-month study aimed at characterizing short-term variability in function and testing the reliability of both self-report and performance indicators of functioning. The study was designed to select a sample of approximately 100 women, with equal numbers of subjects in each of nine cells defined by age ($65-74,75-84$ and 85 years and older) and level of disability (two, three, or four domains of disability). The women were visited weekly over 6 months. Overall, 113 women, evenly distributed in the nine cells, agreed to participate in this substudy; 6 dropped out after the first interview and 8 had fewer than 5 visits, effectively creating a final substudy population of 99 women. During weekly intervicws, women were asked about physical function and incident acute and chronic diseases or injuries. Selected per-formance-based tests of function also were administered.

Unique Contributions of the WHAS

No study has evaluated a representative sample of disabled older women living in the community in the breadth and depth attempted by the WHAS. It is hoped that the comprehensive information on the presence and severity of disease, obtained using physiologic and clinical measures, and the rich data characterizing the dimensions of functioning, will make it possible to unravel the complexities of functional decline in older women. In addition, the prospective component of the study (6 -month followup interviews over 3 years) will characterize change in function and relate it to underlying changes in disease status, taking into account the impact of medical care, psychosocial factors, and important life events.

We expect this monograph to be of interest to a diverse group of people concerned with issues of aging, chronic disease, functional decline and disability, and provision of long-term care services. The data selected for presention are relevant to those involved in population-based and clinical re-
search, geriatric care, and policy development. The chapters that follow present the baseline descriptive data from the WHAS on the functioning, diseases and other health, psychosocial, service utilization, and demographic characteristics of the one-third most disabled older women living in the community, as well as data from the population from which the study participants were drawn. The WHAS provides unique data on the heterogeneity of function even within the most disabled segment of the population, as well as on adaptations to disability employed by these disabled older women. The in-home nurse's examination also provides substantial depth in terms of describing exercise tolerance and a range of physiologic and disease characteristics. Finally, these data offer important insight into the daily lives of the participants.

Chapter 1 describes the characteristics of the entire screened population, the screening methods and eligibility criteria, and comparisons between those women who were and were not eligible for the WHAS. Chapters 2, 3 and 4 describe the heterogeneity of functioning in older, disabled women through both self-report and performancebased measures, and through the compensations adopted to maximize function. Chapter 5 describes the day-to-day living circumstances and characteristics of these community-dwelling, disabled women. Chapter 6 provides data on health care utilization and coverage and receipt of preventive services in this population of women, who are likely to be among the greatest consumers of care. Chapter 7 provides extensive information on the instrumental and emotional support received by these disabled women. Chapter 8 describes psychosocial characteristics and perceived quality of life. Chapters 9 and 11 through 14 offer medical history, reported symptoms, and the results of physiologic measures obtained on home examination to characterize presence, manifestations, and severity of cardiovascular, pulmonary, musculoskeletal, and neurologic diseases, and of visual and hearing impairment. Chapter 10 describes exercise tolerance using both graded exercise testing and self-report, as well as distributions of body mass index and triceps skinfolds.

Chapter 15 offers extensive data on medications used by these disabled older women with high rates of comorbidity. Finally, Chapter 16 provides insight into hematologic, biochemical, and thyroid function characteristics. Appendices provide technical details of the sample design and disease ascertainment methodology (Appendices A, E, and F). The full instruments of the WHAS are also included to facilitate their use by the scientific community, including screening and baseline questionnaires (Appendix B), and study protocols for the interviewer's objective assessment of physical function (Appendix C) and the nurse's physical examination (Appendix D).

References

Branch LG. (1980). Functional abilities of the elderly: An update on the Massachusetts Health Care Panel Study. In: Haynes SG, Feinleib M, eds. Second Conference on the Epidemiology of Aging.. DHHS Pub. No. (NIH) 80-969. Bethesda, MD: National Institutes of Health

Branch LG, Katz S, Kniepmann K, Papsidero JA. (1984). A prospective study of functional status among community elders. Am J Public Health 74:266-268.

Branch LG, Meyers AR. (1987). Assessing physical function in the elderly. Clin Geriatr Med 3:2951.

Cohen RA, Van Nostrand JF. (1995). Trends in the health of older Americans: United States, 1994. Vital Health Stat 3(30).

Corti MC, Guralnik JM, Salive ME, Sorkin JD. (1994). Serum albumin level and physical disability as predictors of mortality in older persons. JAMA 272:1036-1042.

Feinleib S, Cunningham P, Short P. (1994). Use of nursing and personal care homes by the civilian population, 1987. National Medical Expenditure Survey Research Findings No. 23. Agency for Health Care Policy and Research. DHHS Pub. No. (PHS) 94-006. Rockville, MD: Public Health Service.

Fried LP, Bush TL. (1988). Morbidity as a focus of preventive health care in the elderly. Epidemiol Rev 10:48-64.

Fried LP, Herdman SJ, Kuhn KE, Rubin G, Turano K. (1991). Preclinical disability: Hypotheses about the bottom of the iceberg. J Aging Health 3:285-300.

Fried LP, Ettinger WH, Hermanson B, Newman AB , Gardin J for the CHS Collaborative Research Group. (1994). Physical disability in older adults: A physiological approach. J Clin Epidemiol 47:747-760.

Hing E, Sekscenski E, Strahan G. (1989). The national nursing home survey: 1985 summary for the United States. Vital Health Stat 13(97).

Koyano W, Shibata H, Haga H, Suyama Y. (1986). Prevalence and outcome of low ADL and incontinence among the elderly: Five years follow-up in a Japanese urban community. Arch Gerontol Geriatr 5:197-206.

LaPlante MP. (1993). Prevalence of mobility and self-care disability-United States, 1990. MMWR 42:760-768.

Lonergan ET, Krevans JR. (1991). A national agenda for research on aging. New Engl J Med 324: 1825-1828.

Manton KG. (1988). A longitudinal study of functional change and mortality in the United States. J Gerontol Med Sci 43:M5153-M5161.

Nevitt MC, Cummings SR, Kidd S, Black D. (1989). Risk factors for recurrent nonsyncopal falls: A prospective study. JAMA 261:2663-2668.

Soldo BJ, Manton KG. (1985). Health status and service needs of the oldest old: Current patterns and future trends. Milbank Mem Fund Q. 63:286319.

Tinetti ME, Williams, TF, Mayewski R. (1986). Fall risk index for elderly patients based on number of chronic disabilities. Am J Med 80:429-434.

Tinetti ME, Speechley M, Ginter SF. (1988). Risk factors for falls among elderly persons living in the community. N Engl $-J$ Med 319:1701-1707.

Warren MD, Knight R. (1982). Mortality in relation to the functional capacities of people with disabilities living at home. J Epidemiol Comm Health 36:220-223.

Wiener JM, Hanley RJ, Clark R, Van Nostrand JR. (1990). Measuring the activities of daily living: Comparisons across national surveys. .J Gerontol Soc Sci 45:S229-S237.

Women's Health and Aging Study Manual of Operations. (1993). Linda P. Fried, 2024 E. Monument Street, Suite 2-600, Baltimore, MD 21205.

Screening the Community-Dwelling Population for Disability

Jack M. Guralnik, Linda P. Fried, Eleanor M. Simonsick, Karen J. Bandeen-Roche, Judith D. Kasper

As described in the Introduction, an agestratified sample of women age 65 years and older residing in the community in Baltimore, Maryland was evaluated for eligibility for the Women's Health and Aging Study (WHAS). The objective of the screening was to identify and recruit the one-third most disabled women living in the community.

A 20 to 30 minute home interview using computer assisted personal interviewing techniques was administered to women who agreed to participate in the screening assessment. This screener questionnaire included batteries assessing disability status and cognitive functioning, both of which were used to determine study eligibility. Information was also obtained from participants on demographic characteristics, selfreported health status, and history of physiciandiagnosed chronic conditions (see Appendix B for the complete screening interview).

All screening interviews were completed personally by respondents. Women who were too cognitively impaired to respond to the screener questions or who were otherwise unable to complete the screening interview themselves were excluded. Participants completing the screening interview were considered eligible for the WHAS if they reported difficulty in one or more items in two, three, or four domains of disability (see Introduction to this monograph) and had a MiniMental State Examination (MMSE) score
(Folstein et al., 1975) of 18 or higher. A total of 4,137 women agreed to be screened, 296 of whom could not personally complete the screening interview. Thus, the screening interview was administered to 3,841 women.

Disability Patterns in the Screened Population

Four domains of disability were considered in the screening process: upper extremity, mobility, higher functioning tasks required for independent living in the community, and self-care. The top half of Table 1.1 shows the specific items included in each domain and the percentage of women participating in the screening who reported difficulty for these items. For each task, the participant was asked whether, by herself and without help from another person or special equipment, she had any difficulty. Data are also presented on the percentage of women with difficulty in one or more items in a domain.

The highest rate of difficulty was in the mobility domain, with over 49 percent of screened women reporting difficulty in one or more items. About 22 percent of women reported difficulty in the self-care domain. Rates of difficulty for all individual self-care items were slightly higher than national estimates for women age 65 years and older (Dawson et al., 1987). For example, 8.2 percent of the WHAS population and 6.5 percent
of a national sample of women age 65 years and older had difficulty with dressing, and 3.8 percent of the WHAS population and 1.7 percent of the national population had difficulty with eating. The WHAS population may have a higher rate of disability than the total U.S. population because it is an urban population with a greater proportion of women with low income and education. Consistent with previous work in this field, the prevalence of difficulty in each domain and for specific items increases dramatically with increasing age (Table 1.1).

The bottom half of Table 1.1 shows the distribution of the number of domains in which a participant had difficulty with one or more items. Women who had difficulty in no domains or only one domain were ineligible for the study and constituted 43.7 percent and 20.1 percent of the screened population, respectively. The percent of women with difficulty in no domains dropped steeply with increasing age, from more than 50 percent in those age 65 to 74 years to slightly more than 22 percent of those age 85 years and older. Most of the women with two domains of difficulty had mobility and upper extremity problems, while the majority of women with difficulty in three domains reported problems with these two domains as well as problems with either higher functioning or self-care. The most severely disabled women-those with difficulty in all four domains-constituted about 13 percent of the screened population, but this percentage rose steeply with increasing age, to 30 percent of those age 85 years and older.

The domain approach used in the WHAS to select a moderately to severely disabled study population identified a cohort with diverse patterns and levels of disability. Many combinations of disabilities are represented in the eligible study population. The domain approach to screening was successful in including women with less common patterns of disability who are typically classified as nondisabled using more conventional approaches to disability assessment, such as screening for mobility or self-care disability alone. For example, a small proportion of women with two domains of disability had
problems with upper extremity function and either higher functioning or self-care tasks. This important subgroup of women would have been excluded if mobility difficulty, which was extremely common in those eligible for the study, were a fixed requirement for study eligibility.

Table 1.1 also demonstrates how the domainbased screening approach used here worked well to appropriately exclude certain women who would have been eligible if a single criterion, such as self-care difficulty, had been used. For example, a small number of screened women (0.6 percent) reported difficulty in self-care but in no other domains, and thus they were excluded. Closer examination revealed that these women generally reported only a little or some difficulty in bathing or dressing and had no difficulty in tasks such as walking a quarter of a mile, doing heavy housework, and lifting and carrying 10 pounds. Their disability was thus likely to be mild and it was appropriate for them to be excluded from the study.

Demographic and Health Characteristics

Table 1.2 shows demographic characteristics, self-assessed health status, and MMSE score for the total screened population and according to study eligibility status. A slightly lower percentage of the population was age 65 to 74 years than the U.S. female population in 1990 (53 versus 55 percent) and a slightly lower proportion was 85 years and older (10 versus 12 percent) (U.S. Bureau of the Census, 1992). While Black women made up 8 percent of the U.S. female population age 65 years and older (U.S. Bureau of the Census, 1992), they represented one-quarter of the population screened for the WHAS. The screened population had a broad range of educational attainment: a third had less than 9 years of education and nearly a fifth had more than 12 years. Overall, 42 percent of the screened population in the WHAS had 12 or more years of education compared to 56 percent for women age 65 years and older in the United States (Aging America, 1991). There was also a wide range of
income; however, one-fifth did not know their income or refused to provide it.

For each category listed in Table 1.2, the distribution of screener status is shown (columns for eligible, non-disabled ineligible, and cognitively impaired ineligible add to 100 percent). For the total population, 33.9 percent were eligible, 62.6 percent were ineligible because they were disabled in only one or no domains, and 3.5 percent were ineligible because of cognitive impairment (MMSE score less than 18). Eligibility ranged from 28 percent for women age 65 to 74 years to 51 percent for women 85 years and older. Higher eligibility rates were seen for African American women, women with less education, and those with lower income. Married women were younger and had lower eligibility. Less than 12 percent of women reporting excellent health were found eligible for the study. In contrast, 80 percent of women reporting poor health were eligible, and an additional 7 percent of these women were cognitively impaired. The mean MMSE score was slightly higher for the non-disabled ineligible than for those who were eligible. Women classified as cognitively impaired who were administered the test had an MMSE range of 0 to 17 and a mean score of 12.5 .

Table 1.3 shows the prevalence of selfreported chronic conditions for the total screened population and according to screener status. For all conditions listed there is a substantially higher prevalence in women eligible for the study than in the non-disabled ineligible. The absolute difference in prevalence rates is greater for relatively common diseases such as myocardial infarction, angina, diabetes, arthritis, and hearing problems. In contrast, the ratio of prevalence rates in the eligible versus non-disabled ineligible is greater for rarer conditions such as congestive heart failure, stroke, and Parkinson's disease. Women excluded from the study because they scored 17 or less on the MMSE had prevalence rates that were similar to the ineligible non-disabled group for most conditions. For stroke, hip fracture, and hearing problems, conditions that have previously been demonstrated to be associated with cognitive impairment, the
prevalence was substantially higher in the cognitively impaired group than in the ineligible non-disabled group.

Characteristics of Participants and Nonparticipants Among Women Eligible for the Study

Table 1.4 shows sociodemographic and health characteristics of the 1,409 women who completed the screening interview and were found to be eligible for the study. It also presents this information according to whether women participated in the full baseline evaluation or declined to participate further. Of the 1,409 eligible screener respondents, 1,002 (71.1 percent) participated in the full study. Study participation was defined as completing both the baseline interview and the nurse's examination about 2 weeks later.

Overall, women who participated in the study were very similar to the total eligible population on the characteristics shown in Table 1.4 (first two sets of columns). However, in comparing the eligible participants to nonparticipants (second and third sets of columns), certain differences were seen. Among participants, a larger proportion were age 65 to 74 years and a smaller proportion were age 85 years and older. Blacks participated at a higher rate than Whites, with 28 percent of participants and 20 percent of nonparticipants being Black. The participant group included a somewhat higher proportion with more than 12 years of school, with only slightly lower proportions in the other education subgroups. A substantially higher proportion of nonparticipants did not know or refused to report their income. Marital status was quite similar in those who did and did not participate, and there was little difference in the distribution of self-reported health status among those who did and did not participate in the full study. Mean MMSE score was similar for both groups. In summary, there were no major disparities between eligible women who agreed to participate in the full study and those who declined. The
group who entered the study was somewhat younger, more often African American, and more often had greater than a high school education than the group that declined, but the two groups had similar marital status, self-reported health, and cognitive function.

Classification of Disability Categories in This Monograph

As stated above, a screening procedure that assesses multiple domains of function was valuable in selecting a heterogeneous group of moderately to severely disabled women for this study. For the purpose of presenting descriptive data in this monograph, however, a more conventional approach to disability classification is used. Data are presented for study-eligible participants according to three levels of disability: receipt of help from a person to perform one or more basic activities of daily living (ADLs) (bathing, dressing, eating, using the toilet, getting in or out of bed or chairs), no receipt of help but difficulty with one or more ADLs, and moderate disability. The last group includes those who meet the criteria for the study but have no difficulty with ADLs.

This classification system focuses on ADLs because they are the most commonly assessed measure of disability in old age. Clinicians and other care providers, researchers, and policy makers all have experience with these categories of disability and understand the functional problems and general characteristics of older people who have these disabilities. The category termed moderate disability includes those women disabled enough to qualify for the study but not so disabled as to have difficulty with basic self-care activities. It therefore includes women with difficulty in two or three of the domains assessed in the screening interview.

Table 1.5 shows the disability patterns (excluding ADL tasks) for ineligible, non-cognitively impaired women and for women who were eligible and participated in the full study, according to the three categories of disability de-
scribed above. These data are particularly useful for understanding functional characteristics of eligible women with moderate disability and comparing them with women who were incligible for the study. Overall, nearly all women classified as moderately disabled had upper extremity problems, virtually all reported difficulty with one or more items in the mobility domain, and almost half had difficulty in the higher functioning domain. Comparing eligible women with moderate disability with women who reported some disability but were ineligible for the study, more than 83 percent of those with moderate disability had difficulty in the upper extremity domain as compared with 22 percent of ineligible women with one domain of disability: More than 99 percent of the moderately disabled women had difficulty in the mobility domain compared with 71 percent of women with difficulty in one domain. Furthermore, more than 60 percent of women with moderate disability had two or more areas of difficulty in mobility, compared with less than one-quarter of women with difficulty in one domain. Finally, there was almost no difficulty in the higher functioning domain in the women with one domain of difficulty, while more than 40 percent of moderately disabled women had problems with this domain. Table 1.5 also shows the total number of tasks for which women reported difficulty; these distributions are substantially different stepping from one domain through the most severe level of disability.

These data clearly demonstrate that women with moderate disability were not as disabled as those with difficulty in ADLs, but they were more disabled than ineligible women who had difficulty in one domain only. The question still remains, however, as to whether there were women with one domain of functional difficulty whom some observers might classify as more disabled than certain study-eligible women with two domains of difficulty. The goal of screening was to have no woman classified as eligible for the study who was less disabled than a noneligible woman, and no woman classified as ineligible who was more disabled than an eligible woman. Using a screening instrument, it is rarely possible to perfectly classify individuals as
to any measure of health or disease, and it is likely that a small number of women with mild to moderate disability who should have been included were excluded from this study. However, there is no gold standard by which to measure this. When assessing multiple domains of disability it is sometimes quite subjective as to what combination of disabilities is more severe, and, in fact, which specific health state or pattern of disability individuals would find less desirable may be a matter of personal choice.

Format of Monograph Tables

This chapter describes the population who were screened to obtain a sample of the one-third most disabled women living in the community, the study population for the WHAS. Beginning with Chapter 2, all data presented are limited to the 1,002 women who make up the WHAS study population. Most tables present descriptive information for the total study population and within the three age strata and the three disability groups described above. In general, the tables show the actual number of women evaluated, but all other data are weighted to give estimates for the target population the women in the study represent. Appendix A describes the sampling strategy and gives general variance estimates that may be used to estimate the precision of the population rates and means shown in all tables.

For a small number of variables, there was a large age gradient in rates; in these cases the information according to disability status is presented both as unadjusted and age-adjusted rates. For most variables, age adjustment made little difference compared to the unadjusted rates for the disability categories, and only unadjusted rates according to disability status are presented.

References

Aging America. Trends and Projections. (1991). DHHS Pub. No. (FCoA) 91-28001. Washington, DC: U.S. Department of Health and Human Services.

Dawson D, Hendershot G, Fulton, J. Aging in the eighties: Functional limitations of individuals age 65 years and over. (1987). Advance Data No. 133. DHHS Pub. No. (PHS) 87-1250. Hyattsville, MD: National Center for Health Statistics.

Folstein MF, Folstein SE, McHugh PR. (1975). "Mini-Mental State": A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189-198.
U.S. Bureau of the Census. (1992). Sixty-Five Plus in America. Current Population Reports, Special Studies, P23-178, Washington, DC: U.S. Government Printing Office.

Table 1.1: Disability Patterns of Screened Population for Four Domains of Functioning ${ }^{1,2}$

Disability Status	Total$(N=3841)$	Age		
		$\begin{gathered} 65-74 \\ (N=1777) \\ \hline \end{gathered}$	$\begin{gathered} 75.84 \\ (\mathrm{~N}=1170) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=894) \end{gathered}$
Difficulty for domains and individual tasks (\%)				
Upper extremity domain	34.5	29.6	37.0	51.1
Raising your arms up over your head ${ }^{3}$	11.0	9.8	12.0	14.0
Using your fingers to grasp or handle ${ }^{3}$	15.6	13.3	17.5	20.8
Lifting or carrying something as heavy as 10 pounds, for example a bag of groceries ${ }^{3}$	25.3	20.9	27.3	41.0
Mobility domain	49.6	41.5	54.9	71.7
Walking for a quarter of a mile, that is about 2 or 3 blocks 3	35.1	28.0	38.9	57.9
Walking up 10 steps without resting ${ }^{3}$	23.1	17.6	26.2	39.9
Getting in and out of bed or chairs ${ }^{3}$	14.5	11.4	15.1	27.6
Doing heavy housework such as washing windows, walls or floors ${ }^{4}$	37.7	30.5	42.2	58.8
Higher functioning domain	22.0	14.2	25.6	48.6
Using the telephone ${ }^{4}$	4.7	2.4	5.5	14.1
Doing light housework such as doing dishes, straightening up or light cleaning ${ }^{4}$	10.6	7.4	11.6	24.0
Preparing your own meals ${ }^{4}$	8.2	4.8	9.2	21.5
Shopping for personal items, such as toilet items or medicine ${ }^{4}$	17.6	10.9	19.7	44.2
Self-care domain	21.8	15.8	24.0	45.0
Bathing or showering ${ }^{3}$	17.6	12.4	19.2	38.7
Dressing ${ }^{3}$	8.2	5.7	9.4	17.2
Eating, for example, holding a fork, cutting your food, or drinking from a glass ${ }^{3}$	3.8	2.5	4.7	7.0
Using the toilet, including getting to the toilet ${ }^{3}$	8.0	4.9	9.0	20.1
Disability by number of domains and patterns of difficulty (\%) ${ }^{5}$				
No domains	43.7	51.7	38.2	22.3
One domain ${ }^{6}$	20.1	19.5	22.3	15.2
Upper extremity	4.5	4.8	4.6	3.0
Mobility	14.1	13.7	15.8	9.9
Higher functioning	0.9	0.4	1.4	1.1
Self-care	0.6	0.6	0.4	1.1
Two domains ${ }^{6}$	13.6	13.0	13.9	16.4
Upper extremity and mobility	8.4	8.8	8.1	7.8
Upper extremity and higher functioning	0.1	0.2	0.0	0.0
Upper extremity and self-care	0.5	0.6	0.4	0.5
Mobility and higher functioning	2.5	1.6	2.9	5.1
Mobility and self-care	2.1	1.7	2.4	3.1
Higher functioning and self-care	0.0	0.1	0.0	0.0
Three domains ${ }^{6}$	9.9	7.7	11.3	16.3
Upper extremity, mobility and higher functioning	4.0	3.0	5.0	5.9
Upper extremity, mobility and self-care	4.1	3.8	4.5	3.8
Upper extremity, higher functioning and self-care	0.1	0.2	0.0	0.3
Mobility, higher functioning and self-care	1.7	0.7	1.8	6.3
Four domains	12.7	8.1	14.4	29.9

(Women's Health and Aging Study, screening interview, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ The question is in the form "By yourself, that is without help from another person or special equipment, do you have any difficulty . . . ?"
${ }^{4}$ The question is in the form "Because of a health or physical problem, do you have any difficulty . . . (by yourself)?"
${ }^{5}$ Sum of no domains, one domain, two domains, three domains and four domains may not add up to 100% due to rounding.
${ }^{6}$ Categories may not add up to this rate due to rounding.

Table 1.2: Screener Status According to Demographic Characteristics, Health Status, and Cognitive Functioning ${ }^{1,2}$

Demographics; Health and Cognitive Status	N	Percent of Total Screened ${ }^{3}$	Screener Status ${ }^{4}$		
			Percent Eligible	Percent Ineligible	
				Non-Disabled	Cognitively Impaired ${ }^{5}$
Total	3841	100.0	33.9	62.6	3.5
Age					
65-74	1777	52.9	28.4	70.7	0.9
75-84	1170	36.7	37.0	58.7	4.3
$85+$	894	10.4	50.8	35.3	14.0
Race					
Black	982	25.0	35.6	58.6	5.8
White	2838	74.5	33.3	64.0	2.7
Other	19	0.6	34.8	56.6	8.6
Years of education ${ }^{6}$					
0-8	1433	35.0	39.8	54.6	5.6
9-11	813	22.8	35.2	63.4	1.5
12	852	23.6	27.6	70.5	2.0
More than 12	693	18.6	29.7	69.1	1.2
Income ${ }^{7}$					
Less than \$6,000	484	11.9	44.7	50.2	5.1
\$6,000-7,999	506	13.0	41.5	56.4	2.1
\$8,000-9,999	344	8.9	38.7	59.1	2.2
\$10,000-14,999	513	13.8	33.5	65.1	1.4
\$15,000-24,999	556	15.6	29.0	69.3	1.7
\$25,000-34,999	263	7.2	28.2	70.5	1.4
\$35,000 or more	356	9.8	25.6	73.0	1.4
Unknown/refused	819	19.8	30.4	60.8	8.8
Marital status ${ }^{8}$					
Married	1053	31.0	27.8	70.6	1.5
Widowed	2201	53.2	36.2	59.0	4.9
Separated	80	2.3	42.4	52.4	5.2
Divorced	216	6.2	39.9	59.2	0.9
Never married	285	7.3	35.6	61.5	2.9
At the present time, would you say that your health is . . . ?					
Excellent	370	9.9	11.8	86.7	1.6
Very good	1030	27.5	16.5	81.1	2.4
Good	1275	33.4	30.5	66.0	3.6
Fair	844	21.7	55.2	40.6	4.2
Poor	301	7.6	80.3	12.9	6.8
	N	Mean (Range)	Mean (Range)	Mean (Range)	Mean (Range)
Mini-Mental State Examination Score ${ }^{9}$	3807	$\begin{array}{r} 26.6 \\ (0-30) \\ \hline \end{array}$	$\begin{gathered} 26.6 \\ (18-30) \\ \hline \end{gathered}$	$\begin{gathered} 27.3 \\ (18-30) \\ \hline \end{gathered}$	$\begin{gathered} 12.5 \\ (0-17) \\ \hline \end{gathered}$

(Women's Health and Aging Study, screening interview, 1992-1995)
${ }^{1}$ All variables except income have less than 2% missing data. For these variables results are based on non-missing data.
${ }^{2}$ Percents and means are based on weighted data.
${ }^{3}$ Categories for each item may not add up to 100% due to rounding.
${ }^{4}$ For each row "Eligible," "Non-disabled", and "Cognitively Impaired" may not add up to 100% due to rounding.
${ }^{5}$ Excludes women who were not administered the screener due to extreme cognitive impairment.
${ }^{6}$ What is the highest grade in school or year of college that you completed?
${ }^{7}$ What was your household's total income from all sources, before taxes in [PREVIOUS YEAR]? Social Security, retirement income, job earnings, public assistance, help from relatives, rent from property, and any other income should be included. (If the subject did not know or refused to respond, she was shown a card with income ranges and asked to pick a range.)
${ }^{8}$ Are you now married, or are you widowed, separated, divorced, or have you never been married?
${ }^{9}$ Folstein MF, Folstein SE, McHugh PR. (1975). 'Mini-Mental State.' A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189-98.

Table 1.3: Percent Reporting Chronic Conditions According to Screener Status ${ }^{1,2,3}$

Condition	$\begin{gathered} \text { Total } \\ (\mathrm{N}=3841) \end{gathered}$	Screener Status		
		Eligible$(N=1409)$	Ineligible	
			Non-Disabled $(\mathrm{N}=2226)$	Cognitively Impared ${ }^{4}$ $(N=206)$
Heart attack or myocardial infarction	12.6	20.9	8.1	13.2
Angina	12.5	20.8	8.5	4.7
Congestive heart failure	4.3	8.3	2.0	7.3
High blood pressure	52.5	59.8	48.7	50.0
Other heart disease	10.2	14.8	7.9	4.8
Diabetes	14.1	21.0	10.1	19.6
Arthritis	57.6	76.5	47.8	49.3
Stroke	8.0	14.9	3.7	17.3
Cancer	13.3	16.1	12.1	6.8
Broken or fractured hip	4.7	7.3	2.7	16.5
Parkinson's disease	1.0	2.3	0.3	2.2
Lung disease, such as emphysema or chronic bronchitis	10.1	16.9	6.7	5.9
Hearing problems	18.9	27.1	14.0	26.8
Vision problems	73.0	79.6	69.4	72.8

(Women's Health and Aging Study, screening interview, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ The question is in the form "Has a doctor ever told you that you had (a) (any) . . ?"
${ }^{4}$ Excludes women who were not administered the screener due to extreme cognitive impairment.

Table 1.4: Demographic Characteristics, Health Status, and Cognitive Functioning for All Eligible Women and According to Participation Status in Baseline Assessment ${ }^{1,2}$

Demographics; Health and Cognitive Status ${ }^{3}$	Total Eligible		Participated		Did Not Participate	
	N	Percent	N	Percent	N	Percent
Total	1409	100.0	1002	100.0	407	100.0
Age						
65-74	506	35.9	388	38.7	118	29.0
75-84	434	30.8	311	31.0	123	30.2
$85+$	469	33.3	303	30.2	166	40.8
Race						
Black	366	26.0	284	28.3	82	20.1
White	1037	73.6	713	71.2	324	79.6
Other	6	0.4	5	0.5	1	0.2
Years of education ${ }^{4}$						
0-8	611	43.7	432	43.3	179	44.9
9-11	260	18.6	175	17.5	84	21.1
12	229	16.4	178	17.8	85	21.3
More than 12	297	21.3	213	21.3	51	12.8
Income ${ }^{5}$						
Less than \$6,000	220	15.6	171	17.1	49	12.0
\$6,000-7,999	222	15.8	169	16.9	53	13.0
\$8,000-9,999	140	9.9	98	9.8	42	10.3
\$10,000-14,999	192	13.6	140	14.0	52	12.8
\$15,000-24,999	173	12.3	144	14.4	29	7.1
\$25,000-34,999	80	5.7	66	6.6	14	3.4
\$35,000 or more	100	7.1	73	7.3	27	6.6
Unknown/refused	282	20.0	141	14.1	141	34.6
Marital status ${ }^{6}$						
Married	299	21.2	212	21.2	87	
Widowed	870	61.8	614	61.3	256	62.9
Separated	34	2.4	27	2.7	7	1.7
Divorced	89	6.3	71	7.1	18	4.4
Never married	116	8.2	77	7.7	39	9.6
At the present time, would you say that your health is . . . ?						
Excellent	59	4.2	40	4.0	19	4.7
Very good	203	14.5	145	14.5	58	14.3
Good	430	30.6	300	30.1	130	32.0
Fair	477	34.0	339	34.0	138	34.0
Poor	235	16.7	174	17.4	61	15.0
	N	$\begin{aligned} & \text { Mean } \\ & \text { (Range) } \\ & \hline \end{aligned}$	N	$\begin{gathered} \text { Mean } \\ \text { (Range) } \\ \hline \end{gathered}$	N	$\begin{gathered} \text { Mean } \\ \text { (Range) } \\ \hline \end{gathered}$
Mini-Mental State Examination Score ${ }^{\text {7 }}$	1404	$\begin{gathered} 26.2 \\ (18-30) \\ \hline \end{gathered}$	1002	$\begin{gathered} 26.4 \\ (18-30) \\ \hline \end{gathered}$	402	$\begin{gathered} 25.7 \\ (18-30) \\ \hline \end{gathered}$

(Women's Health and Aging Study, screening interview, 1992-1995)
${ }^{1}$ All variables except income have less than 1% missing data. For these variables results are based on non-missing data.
${ }^{2}$ Percents and means are based on unweighted data.
${ }^{3}$ Categories for each item may not add up to 100% due to rounding.
${ }^{4}$ What is the highest grade in school or year of college that you completed?
5 What was your household's total income from all sources, before taxes in [PREVIOUS YEAR]? Social Security, retirement income, job earnings, public assistance, help from relatives, rent from property, and any other income should be included. (If the subject did not know or refused to respond, she was shown a card with income ranges and asked to pick a range.)
${ }^{6}$ Are you now married, or are you widowed, separated, divorced, or have you never been married?
${ }^{7}$ Folstein MF, Folstein SE, McHugh PR. (1975). 'Mini-Mental State.' A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189-98.

Table 1.5: Disability Patterns for Study Ineligible and Eligible Participants ${ }^{1}$

Tasks with Difficulty (\%)	Eligibility Status and Disability Level				
	Ineligible for Study ${ }^{2}$		Eligible, Participated in Baseline		
	Total$(N=2226)$	One Domain$(N=714)$	$\begin{aligned} & \text { Moderate }{ }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
				Receives No Help ($\mathrm{N}=478$)	Receives Help $(N=181)$
Upper extremity domain Raising your arms up over your head ${ }^{4}$ Using your fingers to grasp or handle ${ }^{4}$ Lifting or carrying something as heavy as 10 pounds, for example a bag of groceries ${ }^{4}$					
	1.7	5.2	20.4	28.0	
	3.8	11.8	25.7	39.2	49.2
	2.2	6.9	61.5	65.1	79.2
Number of tasks ${ }^{5}$01$2+$					
	93.0	78.3	16.9	19.7	7.7
	6.4	19.9	62.1	42.7	34.8
	0.6	1.8	21.0	37.7	
Mobility domain Walking for a quarter of a mile, that is about 2 or 3 blocks ${ }^{4}$ Walking up 10 steps without resting ${ }^{4}$ Getting in and out of bed or chairs ${ }^{4}$ Doing heavy housework such as washing windows, walls or floors ${ }^{6}$					
	12.6	39.4	66.7	77.6	88.4
	5.1	15.9	40.6	56.9	78.1
	2.2	6.7	1.8	52.3	61.9
	13.0	40.3	78.7	81.8	95.6
Number of tasks ${ }^{5}$01$2+$					
	77.2	29.0	0.9	2.9	0.6
	15.0	46.8	37.6	13.4	5.5
	7.8	24.2	61.5	83.7	93.9
Higher functioning domain Using the telephone ${ }^{6}$ Doing light housework such as doing dishes, straightening up or light cleaning ${ }^{6}$ Preparing your own meals ${ }^{6}$ Shopping for personal items, such as toilet items or medicine ${ }^{6}$	0.8	2.5	7.9	11.3	24.3
	0.0	0.1	10.2	25.5	69.1
	0.1	0.4	6.4	15.9	65.8
	0.6	1.7	29.5	46.7	81.2
Number of tasks ${ }^{5}$01$2+$					
	98.7	95.9			
	1.1	3.4	32.1	30.8	12.2
	0.2	0.7	9.3	27.2	
Total number of tasks ${ }^{5.7}$					
0	67.9	73.0	-	-	-
1	23.4	73.0	,	-	-
2	6.7	20.9	27.1	6.9	0.6
3	1.7	5.2	27.1	9.2	1.1
4	0.4	1.0	24.5	13.2	1.1
5	0.0	0.0	13.1	14.0	3.3
6	0.0	0.0	5.3	13.8	12.7
7	0.0	0.0	2.0	12.6	8.3
$8+$	0.0	0.0	0.9	30.3	72.9

(Women's Health and Aging Study, screening and baseline interviews, 1992-1995)
${ }^{1}$ All variables have less than 2% missing data. Results are based on non-missing data. Table uses unweighted data.
${ }^{2}$ Excludes cognitively impaired women.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ The screener question is in the form "By yourself, that is, without help from another person or special equipment, do you have any difficulty . . .?" For study participants the presence of the condition was confirmed in the baseline interview.
${ }^{5}$ Categories may not add up to 100% due to rounding.
${ }^{6}$ The question is in the form "Because of a health or physical problem, do you have any difficulty . . . (by yourself)?"
${ }^{7}$ Based on items from all four domains of disability (Table 1.1).

2

Disability: The Spectrum of Function in Moderately to Severely Disabled Older Women

Linda P. Fried, Judith D. Kasper, Eleanor M. Simonsick, ScoHt L. Zeger

Participants in the Women's Health and Aging Study (WHAS) represent the one-third most disabled older women living in the community. This chapter presents the basic demographic characteristics of this population and further characterizes their functional status and disability, including physical and cognitive functioning. The items on physical functioning were drawn from a number of sources. Questions about activities of daily living (ADLs) are based on a modified version of the Activities of Daily Living Scale (Katz et al., 1963). The questions on instrumental activities of daily living (IADLs) are adapted from the work of Lawton and Brody (1969). Questions on mobility (walking specific distances, walking up or down stairs) and ability to perform heavy housework are adapted from the Rosow and Breslau scale (1966). The question on lifting or carrying 10 pounds is from the physical function scale developed by Nagi (1976). For each of 20 tasks, the percent of the study population reporting any difficulty as well as the level of difficulty reported is presented. Even though all women in the study are disabled, there is great diversity in the type and amount of functional limitation.

Table 2.1 shows the demographic characteristics of older disabled women and the relationship of disability status and age. These weighted data indicate that 15 percent of the disabled population in the geographic target area for this study was
age 85 years and older. Table 1.4, which contains unweighted data, shows that 30 percent of the actual study participants were in this age group. For other demographic data presented in Table 2.1, there are minimal differences from the unweighted data in Table 1.4. Twenty-eight percent of women were Black and 71 percent were White. Racial composition, however, varied by age group, with the proportion of African American women decreasing with increasing age. There was a wide spectrum of both educational attainment and household income levels among these disabled women. For example, at the two extremes, almost 41 percent had less than a ninth-grade education and 18 percent had more than a high school education. Thirty-four percent of the total study population reported incomes under $\$ 8,000$ per year, 23 percent incomes from $\$ 8,000$ to 14,999 , and 30 percent incomes of $\$ 15,000$ or greater; 13 percent did not know their incomes or refused to report them. The oldest women and those receiving help with ADLs were more likely than others not to provide income information. Notably, the group who received help with ADLs had the highest proportion of women with incomes below $\$ 6,000$.

A high proportion of women in the study were widowed, particularly among the oldest group. At the time of the study only 25 percent were married, and this number decreased dramatically
with age, from 34 percent of those age 65 to 74 years to 6 percent of those age 85 years and older (Table 2.1).

Severity of disability and age were strongly asscciated. The oldest old had the highest proportion with any ADL difficulty and the highest proportion who received help with ADLs. Seventy-five percent of the oldest women reported any ADL difficulty, and 22 percent received help, while only 25 percent of women age 85 years and older had moderate disability. In contrast, among those age 65 to 74 years, 61 percent had any ADL difficulties and 15 percent received help, while 39 percent of this age group had moderate disability (Table 2.1).

Study participants also showed diversity in terms of the combinations of disability present. For example, Figure 2.1 shows that in these disabled older women living in the community nearly 40 percent reported difficulty in two domains, 28 percent in three domains, and the remaining onethird in four domains of functioning. Figure 2.1 also shows that the distribution of severity of disability varied by age group. More than 40 percent of women age 65 to 74 years reported difficulty in only two domains, while nearly 50 percent of those age 85 years and older were disabled in four domains. Not surprisingly, high proportions of women reported difficulty with mobility and tasks demanding exercise tolerance (Table 2.2). For example, 83 percent reported difficulty stooping, crouching, or kneeling, and 74 percent reported difficulty walking for a quarter of a mile. Substantial proportions, 38 and 26 percent, respectively, were completely unable to do these activities. More than half of the women reported difficulty climbing up 10 steps without resting and one-fourth reported difficulty walking across a small room.

Across several mobility-related tasks, the prevalence of women reporting difficulty tended to increase modestly with increasing age, while inability to perform the task tended to increase more dramatically. However, there was greater variation by age on some tasks, such as walking across a small room, than on others. Overall,
variation in difficulty with specific tasks appeared to be greater by disability level than by age. For example, of those who reported receiving help with ADLs, 60 percent had difficulty walking across a small room, and 27 percent were unable to do this very basic task. For those with moderate disability, 7 percent reported difficulty and 0.1 percent were unable to perform the task.

Figure 2.1: Number of Domains of Disability for Total Population and by Age Group'

(W'omen's Health and Agıng Study, baseline intervew, 1992-199.5)
${ }^{1}$ Based on weighted data.

Ninety percent of the women with mobility problems had difficulty in two or more tasks in this domain (Figure 2.2). In contrast, a high proportion of those with difficulty in upper extremity tasks, LADLs, or self-care had difficulty in only one task out of the four to six assessed. Less than 15 percent of the study population had difficulty in more than two self-care tasks.

Although these women reside in the community, they had a high frequency of difficulty with many critical aspects of functioning. Table 2.3 shows upper extremity-related functioning. About 66 percent of the study population reported difficulty lifting or carrying a 10 -pound bag of groceries and almost 12 percent had difficulty turning a key in a lock. There were few differences by age. Variations in reporting difficulty did occur by disability level, however. Women with ADL difficulty who received help were more likely than those less
disabled to have difficulty with upper extremity tasks. Over 40 percent said they were unable to lift 10 pounds and 20 percent said they could not turn a key in a lock.

Figure 2.2: Number of Tasks in Which Participants Reported Difficulty for Each Domain ${ }^{1}$

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ Based on weighted data.
Table 2.4 shows the prevalence of difficulty in IADLs in this disabled population. These tasks are viewed as important components of routine daily life (Lawton and Brody, 1969). Age appears to be an important correlate of difficulty for many of these tasks and activities. Sixty-five percent of women age 85 years and older had difficulty shopping for personal items, and half were unable to shop for themselves. One-fourth of the oldest women had difficulty preparing their own meals, and 18 percent could not do this. Overall, of those who reported difficulty, a higher percentage were unable to perform these IADL tasks than was the case for tasks in other areas of functioning. For example, 41 percent of the total population reported difficulty shopping; two-thirds of these were unable to shop for themselves. Similarly, half of those with difficulty managing money reported being unable to do it, and over half of those with difficulty preparing meals said they could not prepare them.

Finally, Table 2.5 illustrates the severity of disability found within the subset of this disabled population with difficulty in ADLs. Inability to do

ADLs was relatively rare (under 5 percent), with the exception of bathing or showering (12 percent). A slight to moderate age-gradient in prevalence of difficulty was apparent. The association with severity of disability was much more pronounced, however. For example, prevalence of difficulty with bathing or showering rose from 62 percent for those with ADL difficulty but receiving no help to 91 percent of those receiving help with ADLs. Prevalence of difficulty dressing, using the toilet, and eating was twofold higher in those receiving help with ADLs compared with those who had difficulty but received no help.

Summary

The data in Tables 2.2 through 2.5 present the frequency of difficulty in specific tasks among the one-third most disabled older women living in the community. Figures 2.1 and 2.2 provide some insight into diversity of functional status among these women. This includes difficulty with functioning in multiple domains, as well as in varying numbers of tasks within a domain. As demonstrated in Chapter 1, the population of disabled women clearly reported poorer functioning than an age-comparable cross section of elderly women. Yet even among this population of moderately to severely disabled women, there is a broad spectrum of difficulty and dependency in a wide variety of tasks.

References

Katz S, Ford AB, Moskowitz AW, Jackson BA, Jaffe MW. (1963). Studies of illness in the aged. The index of ADL: A standardized measure of biological and psychosocial function. JAMA 185: 914-919.

Lawton MP, Brody EM. (1969). Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 9:179-186.

Nagi SZ. (1976). An epidemiology of disability among adults in the United States. Milbank Mem Fund Q 54:439-467.

Rosow I, Breslau N. (1966). A Guttman health scale for the aged. J Gerontol 21:556-559.

Table 2.1: Demographic Characteristics and Cognitive Functioning of Participants
in Baseline Assessment ${ }^{1,2}$

Demographics, Disability, and Cognitive Functioning ${ }^{3}$	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{4} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help $(N=378)$	Receives Help $(N=181)$
Age (\%)							
65-74	44.2				49.1	42.6	38.2
75-84	40.7				40.2	40.6	42.2
$85+$	15.1				10.7	16.8	19.7
Disability level (\%)							
Moderate ${ }^{4}$	35.4	39.4	34.9	25.0			
ADL difficulty: receives no help	47.5	45.9	47.4	52.8			
ADL difficulty: receives help	17.1	14.8	17.7	22.3			
Race (\%)							
Black	28.3	33.0	26.4	19.7	32.4	23.1	33.9
White	71.1	65.6	73.6	80.3	67.2	76.2	65.0
Other	0.6	1.4	0.0	0.0	0.4	0.7	1.1
Years of education ${ }^{5}$ (\%)							
0-8	40.5	33.5	44.9	49.4	41.0	38.7	44.7
9-11	23.1	29.9	19.9	11.5	23.7	22.9	22.3
12	18.3	21.9	14.3	18.5	19.9	16.5	19.9
More than 12	18.1	14.8	20.9	20.6	15.5	21.9	13.1
Income ${ }^{6}$ (\%)							
Less than \$6,000	17.4	16.9	19.2	14.0	16.3	16.5	22.0
\$6,000-7,999	16.8	15.9	17.6	17.5	18.7	16.9	12.8
\$8,000-9,999	9.7	10.2	9.2	9.6	9.0	11.4	6.6
\$10,000-14,999	13.2	14.5	11.1	14.8	12.4	12.8	15.9
\$15,000-24,999	15.5	18.0	15.3	8.9	17.6	15.9	10.2
\$25,000-34,999	6.9	7.0	7.5	5.1	6.2	6.9	8.5
\$35,000 or more	7.9	7.2	8.8	7.6	6.4	9.4	6.7
Unknown/refused	12.6	10.4	11.3	22.6	13.4	10.4	17.3
Marital status ${ }^{7}$ (\%)							
Married	24.5	34.1	20.7	6.3	25.9	21.7	29.2
Widowed	57.3	43.6	64.9	76.6	52.9	60.2	58.2
Separated	3.1	6.0	1.1	0.0	3.9	2.6	2.8
Divorced	7.7	10.9	5.6	4.0	8.4	8.6	3.6
Never married	7.5	5.4	7.7	13.2	9.0	6.9	6.3
Mini-Mental State Examination Score (Mean) ${ }^{8}$	26.7	27.2	26.6	25.1	26.6	27.0	25.8

(Women's Health and Aging Study, screening and baseline interviews, 1992-1995)
${ }^{1}$ All variables except income have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Categories for each item may not add up to 100% due to rounding.
${ }^{4}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{5}$ What is the highest grade in school or year of college that you completed?
${ }^{6}$ What was your household's total income from all sources, before taxes in [PREVIOUS YEAR]? Social Security, retirement income, job earnings, public assistance, help from relatives, rent from property, and any other income should be included. (If the subject did not know or refused to respond, she was shown a card with income ranges and asked to pick a range.)
${ }^{7}$ Are you now married, or are you widowed, separated, divorced, or have you never been married?
${ }^{8}$ Folstein MF, Folstein SE, McHugh PR. (1975). 'Mini-Mental State.' A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189-98.

Table 2.2: Percent of Women Reporting Difficulty in Mobility-Related Tasks and Level of Difficulty Reported ${ }^{1,2}$

Task and Level of Difficulty	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \end{gathered}$	Moderate ${ }^{3}$$(N=343)$	ADL Difficulty	
						Receives No Help $(N=478)$	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (N=181) \\ & \hline \end{aligned}$
Stooping, crouching, or kneeling ${ }^{4}$	82.6	84.5	82.1	78.1	68.2	89.5	93.1
Level of difficulty ${ }^{5.6}$ A little	10.3	11.7	9.8	7.5	14.4	8.4	7.1
Some	14.0	17.3	12.3	8.9	16.6	15.2	5.2
A lot	20.7	23.9	20.4	11.8	16.0	25.2	17.6
Unable to do	37.5	31.6	39.6	49.4	20.9	40.7	63.2
Doing heavy housework such as washing windows, walls, or floors ${ }^{7}$	81.6	80.4	82.8	82.0	77.1	79.7	96.4
Level of difficulty A little Some A lot Unable to do	6.4	8.4	5.5	2.7	10.5	5.4	0.7
	9.2	11.5	8.5	4.0	11.0	10.1	2.7
	11.1	15.6	8.5	4.6	15.7	10.4	3.5
	54.8	44.6	60.3	70.1	39.9	53.7	89.0
Walking for a quarter of a mile, that is about 2 or 3 blocks 8	74.4	69.7	76.5	82.4	66.0	75.4	89.0
Level of difficulty ${ }^{5,6}$ A little	13.7	12.9	16.4	9.1	20.0	12.5	4.2
Some	14.8	14.8	16.3	11.1	17.5	13.9	11.8
A lot	19.1	20.7	19.6	13.3	17.2	22.6	13.6
Unable to do	26.3	21.0	24.3	47.4	11.2	25.9	58.8
Walking up 10 steps without resting ${ }^{\text {b }}$	51.9	49.3	53.3	55.3	37.2	53.5	77.6
Level of difficulty ${ }^{5.6}$							
A little	8.4	6.6	10.8	7.2	8.9	9.2	5.2
Some	15.0	17.4	13.7	11.7	14.8	15.4	14.3
A lot	15.1	16.6	13.8	14.4	9.4	17.1	21.4
Unable to do	13.2	8.8	15.1	21.5	4.1	11.6	36.7
Walking across a small room ${ }^{4}$	25.5	19.4	25.2	44.1	7.2	26.6	60.0
Level of difficulty ${ }^{5.6}$							
A little	4.4	2.5	4.4	9.8	3.0	5.1	5.3
Some	8.4	6.2	8.5	14.8	3.3	10.6	13.1
A lot	5.4	4.8	4.7	9.3	0.9	5.7	14.0
Unable to do	7.0	5.6	7.6	9.4	0.1	4.8	27.2

(Women's Health and Aging Study, screening and baseline interviews, 1992-1995)
${ }^{1}$ All variables have less than 2% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ The question is in the form "By yourself, that is, without help from another person or special equipment, do you have any difficulty. . . ?"
${ }^{5}$ How much difficulty do you have?
${ }^{6}$ The percents of participants reporting their levels of difficulty may not add up to the percent reporting difficulty due to (1) rounding (2) level of difficulty not reported.
${ }^{7}$ The screener question is in the form "Because of a health or physical problem, do you have any difficulty . . . ?" The presence of the condition was confirmed in the baseline interview.
${ }^{8}$ The screener question is in the form "By yourself, that is, without help from another person or special equipment, do you have any difficulty . . . ?" The presence of the condition was confirmed in the baseline interview.

Table 2.3: Percent of Women Reporting Difficulty in Upper Extremity-Related Tasks and Level of Difficulty Reported ${ }^{1,2}$

Task and Level of Difficulty	$\begin{gathered} \begin{array}{c} \text { Total } \\ (\mathrm{N}=1002) \end{array} \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \end{gathered}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help $(N=478)$	$\begin{aligned} & \begin{array}{l} \text { Receives } \\ \text { Help } \\ (N=181) \end{array} \end{aligned}$
Lifting or carrying something as heavy as 10 pounds, for example a bag of groceries ${ }^{4}$	65.7	67.0	66.4	59.8	62.9	63.5	77.5
Level of difficulty ${ }^{5.6}$ A little	16.5	18.6	16.6	9.9	20.9	15.5	10.3
Some	16.7	18.2	17.3	10.6	19.4	16.5	11.8
A lot	12.0	14.0	11.3	7.6	10.9	12.1	13.8
Unable to do	20.1	15.6	20.9	31.4	11.3	19.0	41.6
Using your fingers to grasp or handle ${ }^{4}$	36.5	35.8	38.8	32.3	26.4	38.9	50.6
Level of difficulty ${ }^{5,6}$ A little	15.9	16.5	15.4	15.7	16.5	17.0	11.8
Some	12.1	12.0	14.1	6.9	7.2	14.0	16.7
A lot	7.6	6.3	8.7	8.6	2.4	7.8	17.9
Unable to do	0.9	1.0	0.6	1.1	0.4	0.0	4.2
Raising your arms up over your head ${ }^{4}$	28.4	30.6	27.9	23.0	20.5	27.7	46.4
Level of difficulty ${ }^{5,6}$ A little	9.2	10.6	8.3	7.4	8.8	7.4	15.1
Some	8.6	9.7	8.3	6.4	6.4	10.9	7.1
A lot	6.2	6.4	6.2	5.2	4.5	5.1	12.5
Unable to do	4.2	3.9	4.7	3.7	0.6	4.2	11.6
Turning a key in a lock ${ }^{7}$	11.5	9.2	13.0	13.9	4.5	8.9	33.6
Level of difficulty ${ }^{5,6}$							
A little	2.9	3.3	2.6	2.7	2.5	3.3	2.9
Some	2.9 1.9	2.4 1.2	3.6 2.8	2.4 1.3	1.5 0.0	2.7 2.4	6.4 4.4
Unable to do	3.8	2.4	4.0	7.5	0.5	0.6	19.9

(Women's Health and Aging Study, screening and baseline interviews, 1992-1995)
${ }^{1}$ All variables have less than 2% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ The screener question is in the form "By yourself, that is, without help from another person or special equipment, do you have any difficulty . . . ?" The presence of the condition was confirmed in the baseline interview.
${ }^{5}$ How much difficulty do you have?
${ }^{6}$ The percents of participants reporting their levels of difficulty may not add up to the percent reporting difficulty due to (1) rounding (2) level of difficulty not reported.
${ }^{7}$ The question is in the form "By yourself, that is, without help from another person or special equipment, do you have any difficulty . . . ?"

Table 2.4: Percent of Women Reporting Difficulty in Instrumental ADLs and Level of Difficulty Reported ${ }^{\text {r,2 }}$

Task and Level of Difficulty	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \end{gathered}$	$\begin{gathered} 75.84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \end{gathered}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (N=343) \end{aligned}$	ADL Difficulty	
						Receives No Help $(\mathrm{N}=478)$	$\begin{aligned} & \begin{array}{l} \text { Receives } \\ \text { Help } \\ (\mathrm{N}=181) \end{array} \\ & \hline \end{aligned}$
Shopping for personal items, such as toilet items or medicine ${ }^{4}$	40.9	33.6	39.7	65.0	26.0	39.2	76.4
Level of difficulty ${ }^{5.6}$ A little	4.1	3.9	5.0	2.0	4.8	3.8	3.4
Some	5.2	4.7	4.4	8.5	5.0	5.5	4.6
A lot	4.7	3.6	6.1	4.3	3.1	5.7	5.4
Unable to do	26.8	21.3	24.0	50.2	13.1	24.3	62.2
Doing light housework such as doing dishes, straightening up or light cleaning ${ }^{4}$	24.3	21.9	25.0	29.8	7.3	21.8	66.6
Level of difficulty ${ }^{5,6}$ A little	4.2	5.2	3.7	2.8	1.3	5.6	6.5
Some	6.3	6.1	6.7	6.2	3.1	7.2	10.8
A lot	3.7	4.1	3.3	3.4	1.5	4.1	7.0
Unable to do	10.1	6.6	11.3	17.4	1.4	5.0	42.4
Preparing your own meals ${ }^{4}$	19.0	15.8	20.3	24.9	5.3	13.8	62.0
Level of difficulty ${ }^{5.6}$							
A little	3.0	3.0	3.5	1.7	0.7	3.6	6.3
Some	2.8	3.1	2.5	2.5	1.6	3.2	4.0
A lot	3.3	2.6	4.1	2.8	1.0	2.8	9.1
Unable to do	9.9	7.1	10.1	17.6	1.9	4.2	42.6
Managing your money, for example, paying bills or keeping a bank account ${ }^{\prime}$	14.8	10.0	15.4	27.0	7.5	11.8	38.2
Level of difficulty ${ }^{5.6}$ A little							
A little	3.3	1.6	4.3	5.4	3.1	3.3	3.7
Some	3.0	2.2	2.8	5.9	0.8	3.0	7.8
A lot	1.5	1.4	1.1	2.4	0.3	1.2	4.6
Unable to do	7.0	4.7	7.1	13.2	3.3	4.3	22.2
Using the telephone ${ }^{4}$	10.1	6.8	11.0	17.2	6.1	9.5	20.1
Level of difficulty ${ }^{\text {5,6 }}$							
A little	3.9	3.2	4.2	5.4	2.9	4.0	6.1
Some	2.6	1.5	3.4	3.6	1.6	2.0	6.2
A lot	1.5	1.0	1.6	2.6	0.7	1.7	2.8
Unable to do	1.9	1.0	1.8	4.8	0.7	1.8	4.8
Taking medications ${ }^{8}$	3.9	1.9	4.3	8.7	0.8	1.8	16.2
Level of difficulty ${ }^{5.6}$							
A little	1.2	0.5	1.6	2.0	0.1	0.6	5.0
Some	0.8	0.2	0.8	2.7	0.7	0.5	2.1
A lot	0.6	0.7	0.3	1.0	0.0	0.0	3.5
Unable to do	1.3	0.5	1.6	3.0	0.0	0.8	5.6

(Women's Health and Aging Study, screening and baseline interviews, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ The screener question is in the form "Because of a health or physical problem, do you have any difficulty . . . by yourself?" The presence of the condition was confirmed in the baseline interview.
${ }^{5}$ How much difficulty do you have?
${ }^{6}$ The percents of participants reporting their levels of difficulty may not add up to the percent reporting difficulty due to (1) rounding (2) level of difficulty not reported.

7 The question is in the form "Do you have any difficulty . . . by yourself and without help from another person?"
${ }^{8}$ The question is in the form "Because of a health or physical problem, do you have any difficulty . . . by yourself?"

Table 2.5: Percent of Women Reporting Difficulty in ADLs and Level of Difficulty Reported ${ }^{1,2}$

Task and Level of Difficulty	Total$(N=1002)$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303 \end{gathered}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help $(N=478)$	Receives Help $(N=181)$
Bathing or showering ${ }^{4}$	44.8	39.4	46.9	55.1	0.0	61.7	90.5
Level of difficulty ${ }^{5,6}$							
A little Some	9.5 12.6	10.8 11.3	8.3 13.9	9.0 12.7	0.0 0.0	15.4 19.0	12.7 20.8
A lot	10.3	8.3	11.7	12.3	0.0	14.3	20.4
Unable to do	12.3	8.9	12.7	20.9	0.0	12.6	36.6
Getting in and out of bed or chairs ${ }^{4}$	35.1	33.3	35.4	39.5	0.0	51.4	62.3
Level of difficulty ${ }^{5,6}$							
A little	12.6	12.8	11.8	14.1	0.0	22.1	12.1
Some	11.4	9.2	12.8	14.0	0.0	16.4	21.0
A lot	8.1	8.7	7.9	7.3	0.0	11.4	16.0
Unable to do	2.6	2.2	2.7	3.8	0.0	0.8	13.2
Dressing ${ }^{4}$	21.4	19.1	23.0	23.7	0.0	23.7	59.2
Level of difficulty ${ }^{5,6}$ A little	8.4	9.3	7.0	9.4	0.0	12.4	14.4
Some	7.0	5.4	8.2	8.1	0.0	7.8	19.1
A lot	3.8	3.1	5.1	2.1	0.0	3.5	12.3
Unable to do	2.3	1.4	2.7	3.7	0.0	0.0	13.3
Using the toilet, including getting to the toilet ${ }^{4}$	20.4	17.2	21.4	27.2	0.0	24.2	52.4
Level of difficulty ${ }^{5,6}$ A little	5.1	4.8	5.2	5.4	0.0	8.1	7.1
Some	5.7	5.0	5.5	8.7	0.0	8.4	10.2
A lot	4.9	3.7	5.9	5.7	0.0	3.8	18.1
Unable to do	4.5	3.5	4.8	6.8	0.0	3.4	17.0
Eating, for example, holding a fork, cutting your food, or drinking from a glass ${ }^{4}$	9.1	8.4	10.0	8.6	0.0	11.0	22.6
Level of difficulty ${ }^{5,6}$							
A little	3.9	3.0	5.3	3.0	0.0	6.3	5.6
Some	2.7	2.3	2.8	3.6	0.0	2.6	8.7
A lot	1.6	2.2	1.0	1.8	0.0	1.6	5.0
Unable to do	0.7	0.7	0.9	0.2	0.0	0.3	3.4

(Women's Health and Aging Study, screening and baseline interviews, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ The screener question is in the form "By yourself, that is, without help from another person or special equipment, do you have any difficulty . . . ?" The presence of the condition was confirmed in the baseline interview.
${ }^{5}$ How much difficulty do you have?
${ }^{6}$ The percents of participants reporting their levels of difficulty may not add up to the percent reporting difficulty due to (1) rounding (2) level of difficulty not reported.

3

Adaptation to Disability

Jeff D. Williamson, Linda P. Fried

In studies of older adults, physical function and disability are usually assessed in terms of self-reported difficulty or inability to perform specific tasks of daily life across a range of functions, e.g., activities of daily living (ADLs) such as bathing, dressing, eating, and toileting (Katz et al., 1963) or instrumental activities of daily living (IADLs) such as shopping, telephone use, meal preparation, and money management (Lawton and Brody, 1969), and mobility, upper extremity function, and exercise tolerancedemanding tasks (Nagi, 1976; Rosow and Breslau, 1966). An individual's assessment of the difficulty doing a task may be affected both by self-perception and by adaptations made to compensate for, or minimize, a decline in function. For example, an individual who has installed rails and a chair in the bath because of concerns about unsteadiness may, when questioned, report no difficulty when bathing. Therefore, in studies aimed at assessing disability in the elderly, information on adaptation to disability can provide important insights into a broader spectrum of functioning than asking about difficulty alone (Fried et al., 1991).

This chapter presents data from the Women's Health and Aging Study (WHAS) describing a spectrum of functioning among moderately to severely disabled women and the adaptations they make, including changes in the manner in and frequency with which they perform certain tasks, functional limitations related to structural aspects of the housing environment, and use of walking aids. These data provide insight into the
daily lives of these women and the approaches used to compensate for disability.

Perception of Difficulty and Adaptation to Difficulty

For selected tasks, Table 3.1 presents the proportion of women who reported that they had no difficulty, difficulty, that they were unable to do the task, or that they did not do the task. For those who did these tasks (either with or without difficulty), the proportion doing the task less often and/or differently is provided. For a subset of these tasks, the proportion receiving help is also shown. The questions on adaptation were developed in the Johns Hopkins Functional Status Laboratory (Fried et al., 1991) and adapted for the WHAS.

Table 3.1 shows that substantial percentages of women who reported having no difficulty with a task reported changes in task performance. For example, although 48 percent of participants indicated no difficulty in walking up 10 steps without resting, 37 percent of these women performed this task less often than before. Similarly, 51 percent of participants who indicated that they had no difficulty walking one-quarter of a mile, walked this distance less often. In contrast, 92 percent of women who reported difficulty walking this distance walked it less often. Participants were also asked whether they performed selected tasks differently. Fifty percent of the women reporting no difficulty with heavy
housework and 46 percent of those reporting no difficulty walking up 10 steps without resting reported doing these tasks differently than they used to. Changes in method were reported at even higher rates by women reporting difficulty with these same tasks, 68 percent and 86 percent, respectively. Other tasks in which women reported no difficulty but had changed the frequency and/or method of doing the tasks include walking across a small room, carrying 10 pounds, shopping, preparing meals, and managing money.

The data in Table 3.1 clearly show that when women had difficulty with a task, a high proportion of them reported changes in the method and/or frequency of task performance; a smaller but nonetheless substantial proportion of women who did not perceive difficulty also reported change in the method and/or frequency of task performance. Such adaptation is likely a response to functional decrements made in an effort to preserve task performance. Identifying these adaptations may be useful in understanding how individuals minimize disability and maintain independence. It is notable that tasks for which women were most likely to make adaptations were those for which this population had the highest prevalence of task difficulty or inability to perform. For example, the greatest amount of modification was reported for tasks associated with the highest mobility and exercise-tolerance requirements and the highest rates of reported difficulty and inability. These tasks included heavy housework and climbing stairs.

The importance of these modifications in task performance remains to be determined. However, these results suggest additional dimensions for describing function beyond the existing conceptual frameworks used to identify the presence of disability (Institute of Medicine, 1991; Nagi, 1976; World Health Organization, 1980). These data also suggest that the prevalence of functional decrements may be greater than that ascertained by assessing only difficulty or inability to perform activities.

Relationship of Housing Characteristics to Needs and Abilities

Table 3.2 describes housing characteristics and the need for change in the living environment as well as reductions in the use of living space because of health problems. Eighty percent of these disabled women resided in homes where at least one step up or down was necessary to enter their home. With increasing age, a smaller proportion of women resided in homes with an entry step(s). Among all women whose homes had an entry step(s), almost 11 percent reported they were unable to walk up 10 steps without the assistance of another person or special equipment. The proportion unable to climb 10 steps increased with increasing age and disability level. For women who had entry steps, 19 percent of those age 85 years and older and 34 percent of those receiving help with ADLs reported being unable to climb 10 steps without assistance.

Of the 56 percent of women in this population who lived in homes that did not have a bathroom, bedroom, and kitchen located on the same floor, nearly one-third reported needing them on the same floor. With increasing age and disability level, the proportion of women needing their bathroom, bedroom, and kitchen on the same level increased. Among those age 85 years and older who did not have a residence with a bathroom, bedroom, and kitchen on the same floor, 42 percent needed this arrangement, in contrast to 28 percent of women age 65 to 74 years. In women with ADL difficulty who received help, 57 percent did not have their bathroom, bedroom, and kitchen on the same floor, and 58 percent of these women, compared with 17 percent of the moderately disabled, needed them on the same floor.

Few women had a walk-in shower. The proportion that needed a walk-in shower was about 20 percent and did not vary with age, but was
strongly related to severity of disability. Among women with ADL difficulty who received help, 45 percent who did not have a walk-in shower stated that they needed one because of a health or physical problem.

Overall, 12 percent of participants had stopped using one or more rooms in their homes because of a health or physical condition. The rates were highest in the oldest women and the most disabled. Fifteen percent of women age 85 years and older and 35 percent of women receiving help with ADLs reported that they had stopped using one or more rooms in their home. On average, women who reported reduction in use of living space due to their health no longer used 30 to 40 percent of the rooms in their homes.

Use of Walking Aids

Table 3.3 presents data on the use of walking aids in various environments. When walking, 37 percent of the population used a cane, 32 percent held onto another person, and 11 percent used a walker. Overall, 3 percent of participants could not walk and 11 percent sometimes used a wheelchair. The proportion of participants using each walking aide increased with both age and level of disability, independent of the environment. In addition, 41 percent of this population reported that they reached out for, or held onto, furniture or walls to assist them in walking. This is another example of a compensatory strategy. Another adaptation, reported by 50 percent of these disabled women, is the use of shopping carts for support while shopping. These data indicate that such adaptations, or compensatory strategies, are frequently used to facilitate ongoing performance of tasks such as walking in the home or shopping for personal items. They also suggest that the proportion of this disabled population that reported use of assistive devices may not include the full spectrum of individuals who need them or may have difficulty with postural stability.

The environment in which walking occurred influenced participants choices of assistive devices or other strategies to compensate for their disabilities. Overall, canes, wheelchairs, and the assistance of another person were used less often when the respondents walked inside the home than outside. For example, 19 percent used a cane when ambulating inside while 34 percent used one when walking outside the house. Similarly, 5 and 9 percent, respectively, used a wheelchair, and 6 and 29 percent, respectively, used the assistance of another person when walking inside, compared with outside, the home. This difference likely results from the lesser demands of walking inside in a familiar environment.

Summary

Characterizing adaptations to disability expands our insight into the spectrum of functioning among disabled older women beyond what can be learned through the usual assessment of difficulty and need for help. Further delineation of the types of adaptation used by older people and the predictive importance of such compensations will define whether this dimension can lead to better understanding of risk for further functional decline and of opportunities for prevention of disability.

References

Fried LP, Herdman SJ, Kuhn KE, Rubin G, Turano K. (1991). Preclinical disability: Hypotheses about the bottom of the iceberg. J Aging and Health 3: 285-300.

Institute of Medicine. Committee on a National Agenda for Prevention of Disabilities. (1991). In: Pope AM, Tarlov AR, eds. Disability in America. Toward a National Agenda for Prevention. Washington, DC: National Academy Press.

Katz S, Ford AB, Moskowitz AW, Jackson BA, Jaffe MW. (1963). Studies of illness in the aged. The index of ADL: A standardized measure of biological and psychosocial function. JAMA 185: 914-919.

Lawton MP, Brody EM. (1969). Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 9:179-186.

Nagi SZ. (1976). An epidemiology of disability among adults in the United States. Milbank Mem Fund Q 54:439-467.

Rosow I, Breslau N. (1966). A Guttman health scale for the aged. J Gerontol 21: 556-559.

World Health Organization. (1980). International Classification of Impairments, Disabilities, and Handicaps: A Manual of Classification Relating to the Consequences of Disease. Geneva: World Health Organization.

Table 3.1: Perception of Disability and Adaptation to Disability $(\mathrm{N}=1002)^{1,2,3}$

Task and Adaptation	No Difficulty (\%)	Difficulty (\%)	Unable to Do (\%)	Doesn't Do (\%)
Walking up 10 steps without resting ${ }^{4}$	48.2	38.6	13.2	-
Does less often ${ }^{5}$	37.4	84.6		-
Does differently ${ }^{6}$	46.1	85.5	-	-
Walking for a quarter of a mile, that is about 2 or 3 blocks ${ }^{4}$	25.6	48.1	26.3	-
Does less often ${ }^{5}$	51.3	92.0	-	-
Doing heavy housework such as washing windows, walls or floors ${ }^{7}$	11.9	26.8	54.8	6.5
Does less often ${ }^{5}$	68.9	89.7	.	.
Does differently ${ }^{6}$	49.9	67.9	-	-
Receives help ${ }^{8}$	41.6	58.3	83.4	75.0
Walking across a small room ${ }^{9}$	74.5	19.7	5.8	-
Does less often ${ }^{5}$	16.4	72.4	.	-
Lifting or carrying something as heavy as 10 pounds, for example a bag of groceries ${ }^{4}$	34.3	45.6	20.1	-
Does less often ${ }^{5}$	55.9	90.6	.	-
Shopping for personal items, such as toilet items or medicine?	55.6	14.1	26.8	3.5
Does less often ${ }^{5}$	29.9	74.8	26	
Does differently ${ }^{6}$	22.4	80.4	-	-
Receives help ${ }^{8}$	26.8	71.5	95.9	83.3
Doing light housework such as doing dishes, straightening up or light cleaning ${ }^{7}$	73.6	14.2	10.1	2.1
Receives help ${ }^{8}$	20.7	55.1	93.1	71.5
Preparing your own meals ${ }^{\text { }}$	78.4	9.1	9.9	2.6
Does less often ${ }^{10.11}$	15.0	74.2	.	.
Does differently ${ }^{10.12}$	15.6	63.3	-	-
Missing	10.7	0.0	-	-
Do you have any difficulty managing your money, for example, paying bills or keeping a bank account, by yourself				
and without help from another person?	78.9	7.8	7.0	6.4
Does less often ${ }^{13}$	5.0	69.5	100.0	.
Receives help ${ }^{14}$	14.0	72.0	61.2	39.8
Using telephone ${ }^{7}$	89.4	8.2	1.9	0.5
Receives help ${ }^{8}$	2.2	28.7	56.9	-
Taking medications ${ }^{15}$	95.4	2.6	1.3	0.7
Receives help ${ }^{8}$	3.7	84.8	97.8	14.7

(Women's Health and Aging Study, screening and baseline interviews, 1992-1995)
${ }^{1}$ All variables except preparing meals less often or differently have less than 2% missing data. For these variables, results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ First row for each task may not add up to 100% due to rounding.
${ }^{4}$ The screener question is in the form "By yourself, that is without help from another person or special equipment, do you have any difficulty . . .?" Item is followed by "How much difficulty do you have?" The presence of the condition was confirmed in the baseline interview.
${ }^{5}$ The question is in the form "Do you [do the task] less often than you used to?"
${ }^{6}$ The question is in the form "Do you [do the task] differently than you used to?"
${ }^{7}$ The screener question is in the form "Because of a health or physical problem, do you have any difficulty . . . (by yourself)?" and followed by "By yourself, how much difficulty do you have?" The presence of the condition was confirmed in the baseline interview.
${ }^{8}$ Do you usually receive help from another person [doing the task]?

(Continued)

${ }^{9}$ The question is in the form "By yourself, that is without help from another person or special equipment, do you have any difficulty . . . ?" Item is followed by "How much difficulty do you have?"
${ }^{10}$ Due to an error in the administration of the questionnaire the questions were not asked of all eligible participants.
${ }^{11}$ Have you cut back on the number of meals you prepare because your health makes it difficult?
${ }^{12}$ Have you changed the types of food you prepare or given up preparing certain foods because your health makes it difficult?
${ }^{13}$ Are you less involved in managing your money than you used to be because your health or physical condition makes it difficult?
${ }^{14}$ Does another person usually help you with managing your money?
${ }^{15}$ The question is in the form "Because of a health or physical problem, do you have any difficulty . . . (by yourself)?" and followed by "By yourself, how much difficulty do you have?"

Table 3.2: Relationship of Housing Characteristics to Needs and Abilities ${ }^{1,2}$

Housing Characteristics and Needs \%	Total$(N=1002)$	Age Level			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \end{gathered}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \\ & \hline \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	Receives Help $(N=181)$
Is it necessary to go up or down a step to get into this (house/ apartment) from the outside? Yes If yes: Unable to go up 10 steps 4	$\begin{aligned} & 80.3 \\ & 10.6 \end{aligned}$	84.8 6.6	$\begin{aligned} & 79.8 \\ & 12.8 \end{aligned}$	$\begin{aligned} & 68.2 \\ & 18.6 \end{aligned}$	79.9 1.5	80.1 8.8	$\begin{aligned} & 81.4 \\ & 34.3 \end{aligned}$
Does this (house/apartment) have a bathroom, bedroom, and kitchen all on the same floor or level? No If no: Because of a health or physical problem, do you need a bathroom, bedroom, and kitchen all on the same floor or level?	55.9 31.9	60.8 28.1	55.3 33.6	43.5 41.9	60.6 17.4	52.0 34.0	57.0 58.2
Does this (house/apartment) have a walk-in shower, that is, where you don't step over the side of the tub to get into the shower? No If no: Because of a health or physical problem, do you need a walk-in shower?	84.7 22.2	84.1 22.8	85.9 20.4	83.2 25.4	85.4 14.5	84.6 20.0	83.7 45.0
Are there any rooms that you have stopped using because of your health or physical condition? Yes If yes: Mean percent of rooms ${ }^{5}$	$\begin{aligned} & 12.1 \\ & 40.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.9 \\ & 32.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 42.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.6 \\ & 47.9 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.4 \\ 29.7 \\ \hline \end{array}$	$\begin{aligned} & 10.5 \\ & 36.2 \end{aligned}$	$\begin{aligned} & 34.7 \\ & 43.8 \end{aligned}$

(Women's Health and Aging Study, baseline interview, 1992-1994)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Percents and means are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ By yourself, that is without help from another person or special equipment, do you have any difficulty walking up 10 steps without resting? How much difficulty do you have?
${ }^{5} 100(r / R)$, where $r=$ number of rooms no longer using (How many?) and $R=$ number of rooms (How many rooms do you have in your (house/apartment)?!

Table 3.3: Walking Aids (Percent) ${ }^{1,2}$

Walking Aids	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{array}{r} 85+ \\ (N=303) \\ \hline \end{array}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \\ & \hline \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	Receives Help $(N=181)$
When you walk, do you . . . ?							
Use a cane Use a walker	37.0 11.2	27.9 7.1	39.9 10.6	56.0 24.6	22.3 2.5	44.5 11.3	46.6 28.9
Reach out for or hold onto furniture or walls	41.0	36.7	40.3	55.6	24.9	46.7	58.6
Hold onto another person	32.3	27.6	31.4	48.2	19.4	33.8	54.7
Cannot walk	3.1	3.1	3.1	2.8	0.0	1.3	14.3
Do you use a wheelchair?	11.1	9.6	11.2	15.2	1.8	8.1	38.4
Do you . . . at home? Use a cane Use a walker Use a wheelchair Reach out for or hold onto furniture or walls (when you walk) Hold onto another person (when you walk)							
	19.3	12.2	21.2	34.8	9.0	22.2	32.0
	9.2	5.8	8.4	21.7	1.7	8.7	26.5
	5.4	6.1	4.7	5.2	0.4	2.4	24.1
	38.4	33.8	38.3	52.1	24.1	43.7	53.4
	6.2	4.8	6.4	9.9	2.5	3.6	21.4
Do you . . . outside your home? Use a cane Use a walker Use a wheelchair Reach out for or hold onto furniture or walls (when you walk) Hold onto another person (when you walk)							
	34.3	26.3	36.7	51.4	20.8	42.6	39.4
	6.7	5.8	5.6	12.5	1.5	7.3	15.9
	9.0	8.3	8.2	13.4	1.4	7.0	30.6
	21.0	17.8	21.8	27.9	12.2	25.2	27.5
	28.5	24.3	28.8	40.3	17.8	30.3	45.6
When you walk in the dark, do you (reach out for or) hold onto . . . ? The furniture or walls Another person Doesn't walk in dark							
	40.3	38.0	42.0	42.4	38.4	41.6	40.5
	7.0	5.6	8.4	7.3	6.6	5.1	13.4
	11.2	10.6	8.7	20.0	7.1	14.5	10.7
Cannot or does not walk across small room	7.0	5.6	7.6	9.4	0.1	4.9	27.5
When you shop, do you lean on an object such as a shopping cart? Yes							
	50.3	52.3	51.1	42.2	49.5	57.3	32.3
Doesn't shop or walk	20.5	14.6	18.4	43.3	8.6	15.6	58.5

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).

Physical Performance Measures

Luigi Ferrucci, Jack M. Guralnik, Karen J. Bandeen-Roche, Mary E. Lafferty, Marco Pahor, Linda P. Fried

In performance-based tests, which objectively assess various aspects of physical functioning, an individual typically performs a task in a standardized manner and performance is measured with predetermined, objective criteria, often including time to completion or counting of repetitions. In recent years, these measures have been increasingly employed in studies of functional status and disability in old age. In older persons, performance measures provide information that complements what can be learned from a clinician's physical examination (Tinetti and Ginter, 1988) and from traditional, questionnaire-based approaches that assess disability through proxy or self-report (Guralnik et al., 1989, 1994; Reuben et al., 1992, 1995).

The Women's Health and Aging Study (WHAS) included physical performance measures because they offer objective and detailed information about functional capacity and therefore provide valuable information for understanding the causal pathway from diseases to disability. The specific performance tests selected assess a spectrum of functioning, from basic abilities such as balance to complex activities such as putting on a blouse. These measures also quantify physical function along a continuous scale, ranging from very poor to excellent. They are therefore expected to be particularly valuable in detecting change in function over time.

A variety of performance tests have been developed for use in institutions (Gerety et al.

1993; Winograd et al., 1994) and among com-munity-dwelling older persons (Guralnik et al., 1994; Harding et al., 1994; Reuben and Siu, 1990; Tinetti, 1986; Tinetti and Ginter, 1988; Weiner et al., 1992; Williams and Hornberger, 1984; Williams et al., 1990). In general, these tests may be categorized by either the domain of functioning they assess (e.g., upper extremity versus lower extremity) or the complexity of the functioning they assess (more basic physiologic abilities, such as grip strength, versus more complex tasks, such as putting on a blouse).

The first part of this chapter groups the results of performance-based tests assessing basic physical abilities according to lower extremity and upper extremity function. Performance of more complex tasks that mimic activities in daily life are reported later in the chapter. The performance tests were administered in the participant's home by a nurse, with the exception of functional reach, dialing the telephone, putting on a blouse, and opening a lock with a key, which were administered by an interviewer.

The tables also provide information on subjects with missing values and, in particular, the percentage who could not complete the tests because of physical limitations. Identifying inability to perform a test provides meaningful information about individual functioning. In addition, completion rates for these tests may be important to other investigators as they estimate the proportion of the disabled population that can be evaluated using each specific instrument.

Lower Extremity Function

Good lower extremity function is necessary for mobility and is thus a critical element for independence in the community. Measures of gait, balance, and ability to rise from a chair have been found to predict mortality and nursing home admission in representative samples of older adults (Guralnik et al., 1994) and incident disability in nondisabled persons over age 70 years (Guralnik et al., 1995). Measurements of hip flexor and knee extensor muscle strength are presented in Chapter 12 (see Table 12.7).

Measured Walk

The ability to walk is essential for many tasks of daily life. It requires the coordinated function of a number of subsystems, including muscular strength, joint mobility, coordination, proprioception, reflex control, and balance.

In the WHAS, the participant was asked to walk over a 4 -meter course. For a small group of women, adequate space was not available in the home and a 3 -meter course was used. Participants were instructed to stand with both feet at the starting line and to start walking after a specific verbal command. Timing began when the command was given. In this test, the subject could use a cane, a walker, or other walking aid, but not the aid of another person. The times to complete the first meter and the entire path were recorded. The test was repeated three times, twice at the woman's usual pace and once at her fastest possible pace. The speed of the faster of the two usual-pace walks is presented. The length of the walk expressed in meters divided by the time in seconds was used to calculate avexage walking speed.

Table 4.1 shows the results for the measured walks. The percent of participants unable to do the usual-pace walk increased with increasing severity of disability but not with age. This lack of an age association was unexpected. One possible explanation is that a high proportion of the oldest disabled women who cannot walk a short
distance reside in long-term care facilities and were therefore excluded from this study of com-munity-dwelling women. The percent unable to do the fast-pace walk was higher than for the usual-pace walk and increased with increasing age and disability.

Walking speed was inversely related to age and level of disability in both the usual-pace and fast-pace tests. It has been demonstrated that usual walking speed of less than 0.6 meters/ second is associated with increased risk of falls (Nevitt et al., 1989). In the WHAS population, the percent of subjects under this threshold ranged from 50 percent to over 75 percent, depending on age and level of disability (Table 4.1).

The difference between mean gait speed in the fast-pace versus the usual-pace walk becomes smaller with increasing level of disability, specifically $0.4,0.3$, and 0.2 in the moderate, ADL difficulty receives no help, and ADL difficulty and receives help groups, respectively (Table 4.1). This result should be interpreted with caution, however, since the results for the fast-pace walk include a somewhat smaller subset of subjects (women who were slower in the normal-pace walk were more likely not to perform the fast-pace walk).

Tests of Balance

A series of performance tests in the WHAS explore the integrity of physiological systems involved in the maintenance of static and dynamic balance.

Static balance is evaluated in three different, progressively more difficult stances (Buchner et al., 1993; Guralnik et al., 1994): (1) side-by-side: feet side by side, touching; (2) semi-tandem: side of the heel of one foot touching the big toe of the other; (3) tandem: heel of one foot directly in front of and touching the toes of the other foot. Each stance is progressively more difficult to hold. Women unable to hold a position for 10 seconds were not asked to attempt further stands.

The results of the balance tests are reported in Table 4.2. The proportion of women able to hold each stand decreased substantially with increasing age and level of disability. Almost 40 percent of women age 65 to 74 years maintained the tandem stand for the full 10 seconds in contrast to only 4 percent of the oldest women. Similarly, 35 percent of the moderately disabled women held the tandem stand for 10 seconds compared to 8 percent of the most disabled women. Progressively higher proportions of women were able to hold the semi-tandem and side-by-side stands, compared with the full tandem.

The functional reach test is a dynamic measure of the perceived limit of stability during a voluntary movement (Duncan et al., 1990; Weiner et al., 1992). For this test, the participant was instructed to stand with her right shoulder next to a wall, make a fist, fully extend her arm horizontally at the level of the shoulder, and then reach forward as far as possible without losing balance or changing the position of her feet. Functional reach is defined as the difference (in centimeters) between the initial and final position of the fist. The results shown in Table 4.3 are the best of three trials.

A relatively large percentage of the population did not perform the functional reach test. Participants were considered unable to do the test if they could not stand unassisted for 30 seconds, if there were concerns about safety, or if they attempted but could not complete the test. Excluded from Table 4.3 are the 10 percent of women whose homes had insufficient wall space to perform the test. As lack of sufficient wall space is unlikely to be associated with ability to perform the test, the data reported here should be considered representative of the entire WHAS sample.

The proportion unable to perform the test rose steeply with increasing age and level of disability. Among those who performed the test, the mean distance reached was shorter in women age 75 years and older compared with younger women, and shorter in those receiving help with

ADLs compared with the remainder of the cohort. There was a wide spectrum of performance in the total population, ranging from 7.5 centimeters for those in the 5 th percentile to 34.0 centimeters for those in the 95 th percentile. Interestingly, this range was quite similar for all age and disability subgroups.

Chair Stands

To test the ability to rise from a chair, participants were asked to sit with their arms folded across their chests in a straight-backed chair placed with its back against a wall, and then to stand up from the chair one time. If they were successful, they were asked to stand up and sit down as quickly as possible five times in a row. Timing commenced from the initial sitting position and ended at the final standing position at the end of the fifth stand.

The chair stand is a complex test in which several physiologic components, including muscular strength, balance, coordination, joint range of motion, and exercise tolerance, contribute to the overall performance. From the functional point of view, the task may be described as the ability to transfer the body from one posture to another, with the second posture requiring a higher level of energy and more effective functioning of the systems involved in maintaining balance.

Table 4.4 shows that the simple capacity to stand from a chair without using the arms is strongly associated with both age and level of disability. Table 4.5 shows the results for the repeated chair stands. It is interesting to note that the proportion of women who were unable to perform five chair stands was just slightly higher than the proportion who were unable to perform the single chair stand, as shown in Table 4.4. Among women who completed five stands, the mean time to completion increased with increasing age and severity of disability. There was, nonetheless, a wide range of performance in each age and disability subgroup. Evidence indicates that poor performance in chair stand tests is associated with adverse health outcomes in older
persons (Cummings et al., 1995; Guralnik et al., 1994, 1995; Tinetti et al., 1995).

Upper Extremity Function

Performance on tests of upper extremity function is an important marker of functional dependency (Williams et al., 1990). Older individuals who perform poorly on tests of manual dexterity tend to use more health care resources (Scholer et al., 1990; Williams et al., 1982), including intermediate and long-term care (Williams and Hornberger, 1984; Williams, 1987).

In the WHAS, the following components of upper extremity function were assessed: grip and pinch strength, overhead lifting ability, shoulder range of motion, manual dexterity, and performance of selected tasks of daily living.

Strength

Tables 4.6 and 4.7 report data on grip and pinch strength, which were obtained using a JAMAR hand dynamometer (Model \#BK-7498, Fred Sammons, Inc., Burr Ridge, IL) and a standard $0-60$ pound pinch gauge (Model \#81441, Adaptability, Colchester, CT), respectively. Grip strength was performed three times with each hand. The best measure in the stronger hand is reported. For pinch strength, the best of two trials (one on the left side and one on the right side) is reported. For both strength measures, the percent of subjects who did not perform the tests increased with level of disability, while there was no clear association with age. Among those who were able to perform the tests, grip and pinch strength decreased with increasing age and level of disability.

To evaluate overhead lifting ability, another aspect of upper extremity strength, a water-filled plastic jug weighing 10 pounds was placed on the lap of the participant, who was then asked to lift the jug above her head using both arms. Nearly half the participants could lift the 10 -pound jug
over their heads and less than 8 percent could not lift it at all (Table 4.8). The percentage of women who could not lift the jug at least to eye level increased with increasing age and level of disability. The proportion of women who could lift the 10 pounds above their heads declined with increasing age and severity of disability, although the decline was more pronounced with increasing level of disability.

Shoulder Range of Motion

Shoulder range of motion was tested using standardized voluntary movements. External rotation was assessed by having the participant put both hands behind her neck at the level of the ears. To evaluate internal rotation, the participant placed both hands behind her back at waist level with the fingers touching in the midline. These measures provide different information than traditional assessments in which the examiner manipulates the limbs to examine passive range of motion. Voluntary movements are influenced by the presence of pain and muscular weakness, as well as by the morphologic characteristics of the joints.

For external and internal rotation, performance was classified as "fully able" (test performed correctly), "partially able" (test performed partially; for example, forearm not parallel to the floor or hands not behind the neck for external rotation), or "unable" (no component of the movement could be performed), according to preestablished criteria.

The data on external shoulder rotation show reduced range of motion with increasing age and level of disability. The reduction in range of motion is particularly notable in association with disability level, declining from about 80 percent fully able among the moderately disabled to only half fully able among women who received help with ADLs. In contrast, problems with internal rotation were relatively rare, affecting less than 5 percent overall, with little association with age and an increase with increasing level of disability.

Purdue Pegboard

The Purdue Pegboard is a test of manual dexterity that involves two different abilities: gross movements of arms, hands, and fingers, and fine motor dexterity, also called "fingerprint" dexterity. The test consists of picking up small steel pegs from a well in the pegboard and placing them sequentially in 10 holes as quickly as possible.

Results are shown in Table 4.10 for the dominant and nondominant hands. There is a clear relationship of performance with age and disability level. With increasing age and severity of disability, the proportion who were unable to complete the test increased and, among those who completed the test, there was a decline in both the mean and median times. The strong association between manual dexterity and disability is noteworthy, as many ADLs do not depend on fine motor movements of the hand. Performance on the Purdue Pegboard test probably also reflects the central neurologic processing components of movement, such as coordination.

Daily Living Tasks

The performance-based assessment of upper extremity function ended with three timed tests that mimic common tasks performed in daily life -opening a lock with a key, putting on and buttoning a blouse, and finding a telephone number and dialing it. The capabilities explored by these performance tests differ from the functional abilities described above. These tests focus on the ability to reproduce complex, real-life tasks rather than on specific physiologic abilities. Thus, these measures are closer to the concept of disability than are the tests of more basic abilities.

For the task of opening a lock with a key, the participant was instructed to pick up a key from the table and open a lock mounted in a wooden block as quickly as possible. Time was recorded from the first movement of the participant's hand toward the key until the lock was opened. A maximum time of 1 minute was allowed. For
the task of putting on and buttoning a blouse the participant was given a blouse of appropriate size and instructed to put it on and button it as fast as possible without mistakes (Cardiovascular Health Study, 1990). This task was performed in the standing position or, for women unable to stand unsupported, in the sitting position. Timing began when the participant touched the blouse and ended when the task was completed or after 4 minutes, whichever came first.

In general, the functional abilities of almost all participants could be evaluated with these tests, although many were unable to perform certain aspects of the tasks. All but 6 percent were able to open the lock and all but 5 percent were able to put on the blouse (Tables 4.11 and 4.12). However, 19 percent of the women were unable to button the blouse. Poor performance in opening a lock and putting on a blouse was associated with level of disability, and the buttoning component of putting on the blouse was especially problematic for women who received help with ADLs. A major component of these tasks is manual dexterity. The association of performance on these tasks with level of disability is consistent with the results previously presented for tests investigating more basic physical abilities of the upper extremities, i.e., pinch and grip strength and Purdue Pegboard performance.

In the telephone use task, the participant was instructed to look up a specific telephone number on a mock telephone book page and to dial it on a standard Touch-Tone telephone. If the participant could not find the number, the examiner told her where on the page to look for it. If still unsuccessful, she was given the number on a piece of paper. Timing began when the participant started looking for the telephone number and was stopped when she had dialed the entire number. Table 4.13 shows results separately for finding and for dialing the number, and gives the distribution of time to complete the entire task for those who found and dialed the correct number.

The ability to find and dial a telephone number is more dependent on cognition, vision, and
ability to read than on motor ability. Women with severe cognitive impairment were excluded from this study population, so the role of cognition in task performance is probably less important than for the total older population. The ability to find the telephone number decreased markedly with increasing age and disability level. The need for prompting increased somewhat with age but not with disability level. The strong age and disability gradient was more related to visual problems and was noted through the need for a magnifier and inability to read print. Among those who found the correct telephone number or were given the number, 90 percent dialed the correct number. The percentage successful in this task declined with age and level of disability. However, the age gradient was associated with the increased percentage of the older subjects dialing the incorrect number, while the disability gradient was more related to actual inability to dial the number in those with the greatest disability. The total time required to perform the task, shown only for those who completed the entire sequence by themselves, was associated with both age and disability, although there was a large range of variability within each subgroup.

Summary

The physical performance tests described in this chapter provide comprehensive information on many aspects of the functional capabilities of moderately to severely disabled older women in the WHAS. The study provides valuable information on the proportion of women who can complete each task and the level of performance of those who do complete the task. Even in this cohort of women, selected for having disability, most women could complete most of the tasks. There was, however, a wide range of performance in each of the age and disability subgroups. Ultimately, improving our understanding of the factors that cause an older person's functional limitations and the impact these limitations have on an older person's ability to remain independent in the community is an important challenge for aging research.

References

Buchner DM, Hornborrk MC, Kutner NB, Tinetti ME, Ory M, Mulrow CD, Schechtman KB, et al. (1993). Development of the common database for the FICSIT trials. J Am Geriatr Soc 41:297-308.

Cardiovascular Health Study. Manual of Operations. (1990). CHS Coordinating Center, University of Washington, Seattle, Washington.

Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, Cauley J, et al. (1995). Risk factors for hip fracture in white women. N Engl J Med 332:767-773.

Duncan PW, Weiner DK, Chandler J, Studenski S. (1990). Functional reach: A new clinical measure of balance. J Gerontol Med Sci 45:M192. M197.

Gerety MB, Mulrow CD, Tuley MR, Hazuda HP, Lichtenstein MJ, Bohannon R, Kanten DN, et al. (1993). Development and validation of a physical performance instrument for the functionally impaired elderly: The Physical Disability Index (PDI). J Gerontol Med Sci 48:M33-M38.

Guralnik JM, Branch LG, Cummings SR, Curb JD. (1989). Physical performance measures in aging research. J Gerontol Med Sci 44:M141. M146.

Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, et al. (1994). A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol Med Sci 49:M85-M94.

Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. (1995). Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med 332:556-561.

Harding VR, Williams AC, Richardson PH, Nicholas MK, Jackson JL, Richardson IH, Pither CE. (1994). The development of a battery of measures for assessing physical functioning of chronic pain patients. Pain 58:367-375.

Nevitt MC, Cummings SR, Kidd S, Black D. (1989). Risk factors for recurrent nonsyncopal falls: A prospective study. JAMA 261:2663-2668.

Reuben DB, Siu AL. (1990). An objective measure of physical function of elderly outpatients: The Physical Performance Test. J Am Geriatr Soc 38:1105-1112.

Reuben DB, Siu AL, Kimpau S. (1992). The predictive validity of self-report and performancebased measures of function and health. J Gerontol Med Sci 47:M106-M110.

Reuben DB, Valle LA, Hays RD, Siu AL. (1995). Measuring physical function in communitydwelling older persons: A comparison of selfadministered, interviewer-administered, and performance-based measures. J Am Geriatr Soc 43:17-23.

Scholer SG, Potter JF, Burke WJ. (1990). Does the Williams manual test predict service use among subjects undergoing geriatric assessment? J Am Geriatr Soc 38:767-772.

Tinetti ME. (1986). Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 34:119-126.

Tinetti ME, Ginter SF. (1988). Identifying mobility dysfunctions in elderly patients: Standard neuromuscular examination or direct assessment? JAMA 259:1190-1193.

Tinetti ME, Inouye SK, Gill TM, Doucette JT. (1995). Shared risk factors for falls, incontinence, and functional dependence. Unifying the approach to geriatric syndromes. JAMA 273:13481353.

Weiner DK, Duncan PW, Chandler J, Studenski SA. (1992). Functional reach: A marker of physical frailty. J Am Geriatr Soc 40:203-207.

Williams ME, Hadler MN, Earp JL. (1982). Manual ability as a marker of dependency in geriatric women. J Chron Dis 35:115-122.

Williams ME, Hornberger JC. (1984). A quantitative method of identifying older persons at risk for increasing long term care services. J Chron Dis 37:705-711.

Williams ME. (1987). Identifying the older person likely to require long-term care services. J Am Geriatr Soc 35:761-766.

Williams ME, Gaylord SA, McGaghie WC. (1990). Timed manual performance in a community elderly population. J Am Geriatr Soc 38: 1120-1126.

Winograd CH, Lemsky CM, Nevitt MC, Nordstrom TM, Stewart AL, Miller CJ, Bloch DA. (1994). Development of a physical performance and mobility examination. J Am Geriatr Soc 42: 743-749.

Table 4.1: Measured Walks ${ }^{1,2}$

Walking Test	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help $(N=478)$	Receives Help $(N=181)$
Faster of 2 usual-pace measured walks ${ }^{4}$ Unable to do (\%)	3.8	3.9	4.2	2.3	0.0	1.6	18.0
Speed (meters/second) Mean	0.6	0.7	0.6	0.4	0.7	0.6	0.4
5 th percentile	0.2	0.3	0.2	0.1	0.3	0.2	0.1
25 th percentile	0.4	0.5	0.4	0.3	0.5	0.4	0.2
50 th percentile	0.6	0.6	0.6	0.4	0.6	0.5	0.4
75 th percentile	0.7	0.7	0.8	0.6	0.8	0.7	0.5
95 th percentile	1.1	1.1	1.1	0.8	1.1	1.1	0.8
Fast-pace walk ${ }^{4}$ Unable to do (\%)	6.0	4.9	6.2	9.2	0.3	3.5	26.0
Speed (meters/second) Mean	0.9	1.0	0.9	0.7	1.1	0.9	0.6
5 th percentile	0.2	0.4	0.3	0.2	0.5	0.3	0.2
25 th percentile	0.6	0.8	0.6	0.4	0.8	0.6	0.3
50 th percentile	0.9	1.0	0.9	0.7	1.0	0.9	0.6
75 th percentile	1.1	1.3	1.1	0.9	1.3	1.1	0.8
95 th percentile	1.7	1.7	1.7	1.3	1.7	1.6	1.2

(Women's Health and Aging Study, physical assessment, 1992-1995)
' All variables have less than 3% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ If 4 meters not available, the walk was 3 meters.

Table 4.2: Percent Able to Hold Stands for Ten Seconds ${ }^{1,2}$

Type of Stand	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65.74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	$\begin{gathered} \text { Receives } \\ \text { Help } \\ (\mathrm{N}=181) \\ \hline \end{gathered}$
Side-by-side stand	84.1	90.0	84.6	65.5	95.1	85.3	58.2
Semi-tandem stand	63.2	76.1	61.0	31.6	78.0	62.6	34.5
Tandem stand	24.9	39.7	16.6	4.0	34.8	23.6	8.2

(Women's Health and Aging Study, physical assessment, 1992-1995)

[^0]Table 4.3: Functional Reach ${ }^{1,2}$

Test Performance	Total$(N=899)$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=347) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=279) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=273) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=295) \\ & \hline \end{aligned}$	ADL Difficulty	
						Receives No Help $(\mathrm{N}=432)$	Receives Help $(N=172)$
Unable to do (\%)	26.3	19.1	27.2	44.7	11.5	22.6	63.7
Distance reached (cm) ${ }^{4}$ Mean	20.9	22.8	19.1	19.3	21.5	21.1	17.1
5 th percentile	7.5	8.6	6.9	8.5	7.5	8.5	4.7
25th percentile	15.2	18.4	13.5	14.5	17.4	15.0	10.5
50 th percentile	21.5	24.0	18.8	19.0	22.0	21.3	16.4
75th percentile	26.3	28.2	24.0	24.0	27.0	26.4	24.2
95th percentile	34.0	34.8	32.8	33.0	34.0	34.0	31.8

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ Data on functional reach missing for 103 (10\%) women; most missing data due to lack of wall space. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ Longest of up to three reaches.

Table 4.4: Single Chair Stand ${ }^{1,2}$

Ability to Stand from Chair	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \end{gathered}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	Receives Help ($\mathrm{N}=181$)
Stood without using arms (\%)	78.7	85.4	78.3	59.8	94.1	80.5	42.1
Unable to stand without using arms (\%)	21.3	14.6	21.7	40.2	5.9	19.5	57.9

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ Variable has less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).

Table 4.5: Repeated Chair Stands ${ }^{1.2}$

Test Performance	Total$(N=1002)$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($N=478$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=181) \\ & \hline \end{aligned}$
Unable to do (\%)	25.2	17.8	25.9	44.9	7.5	24.4	63.7
Time to rise five times (seconds) Mean	15.3	14.7	15.7	16.3	14.2	15.8	17.9
5 th percentile	24.5	21.9	25.5	24.1	20.7	25.3	28.6
25 th percentile	17.4	16.7	17.5	18.5	15.9	18.1	20.1
50 th percentile	14.2	13.9	14.4	15.0	13.5	14.8	16.8
75 th percentile	12.3	12.1	12.4	12.7	11.7	12.9	13.5
95th percentile	10.0	9.6	10.3	10.0	9.3	10.1	112

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ Variable has less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).

Table 4.6: Grip Strength ${ }^{1}$

Test Performance	$\begin{gathered} \text { Total } \\ \langle\mathrm{N}=1002\rangle \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \\ \hline \end{gathered}$	Moderate ${ }^{2}$$(N=343)$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (N=181) \\ & \hline \end{aligned}$
Unable to do (\%) ${ }^{3}$ Missing (\%) ${ }^{4}$	$\begin{aligned} & 2.6 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 4.5 \end{aligned}$	3.3 4.5	2.0 7.8	0.6 5.4	3.4 5.1	$\begin{aligned} & 4.9 \\ & 3.6 \end{aligned}$
Grip strength $(\mathrm{kg})^{5}$	20.8	22.6	20.1				
5 th percentile	12	13	11	17.5	13	21.2 12	$\begin{gathered} 17.9 \\ 8 \end{gathered}$
25 th percentile	17	20	17	15	18	17	14
50 th percentile	20	23	20	18	21	20	18
75 th percentile	24	26	24	20	24	24	20.5
95 th percentile	30	31	30	25	30	30	27

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ Descriptive statistics are based on weighted data.
${ }^{2}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{3}$ Includes women with recent worsening of pain or of arthritis in the wrist, tendonitis, recent surgery on hands or arms or for whom test was thought to be unsafe.
${ }^{4}$ Includes $53(5 \%)$ women not given the task because of a blood pressure alert.
${ }^{5}$ The best measure of three attempts for stronger arm.

Table 4.7: Pinch Strength ${ }^{1}$

Test Performance	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	Moderate ${ }^{2}$$(N=343)$	ADL Difficulty	
						Receives No Help $(\mathrm{N}=478)$	Receives Help $(N=181)$
Unable to do (\%)	0.5	0.5	0.3	0.7	0.1	0.6	0.6
Pinch strength $(\mathrm{kg})^{3}$ Mean	5.0	5.3	4.7	4.3	5.2	4.9	4.4
5 th percentile	3	3	3	3	3	3	2
25th percentile	4	4	4	4	4	4	3
50th percentile	5	5	5	4	5	5	4
75th percentile	6	6	5	5	6	6	5
95 th percentile	7	8	7	6	8	7	7

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }_{2}^{1}$ Descriptive statistics are based on weighted data.
${ }^{2}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{3}$ The best measure of two attempts, one left and one right.

Table 4.8: Upper Extremity Strength ${ }^{1,2,3}$

Height of Lift	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \\ \hline \end{gathered}$	Moderate ${ }^{4}$$(N=343)$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=181) \\ & \hline \end{aligned}$
Lifting 10-pound jug (\%)							
Lifted over head	48.6	59.9	44.1	28.0	61.9	50.0	16.6
Lifted to eye level	26.4	23.0	29.1	29.1	24.8	27.0	27.8
Unable to lift to eye level	17.3	10.4	18.1	35.0	8.9	18.3	32.1
Unable to lift over 1 inch	7.7	6.7	8.8	7.9	4.4	4.7	23.5

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ Variable has less than 3% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Columns may not add up to 100% due to rounding.
${ }^{4}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).

Table 4.9: Shoulder Rotation ${ }^{1.2}$

Range of Motion ${ }^{3}$	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \\ \hline \end{gathered}$	Moderate ${ }^{4}$$(N=343)$	ADL Difficulty	
						Receives No Help ($N=478$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=181) \\ & \hline \end{aligned}$
Right shoulder, external rotation (\%)							
Fully able	71.7	76.2	70.4	61.9	80.0	73.0	50.6
Partially able	25.6	21.4	27.1	33.5	19.8	25.0	39.2
Unable	2.8	2.4	2.6	4.6	0.2	2.0	10.3
Left shoulder, external rotation (\%)							
Fully able	71.2	75.7	70.6	59.8	78.8	73.3	49.5
Partially able	25.1	20.9	25.2	37.5	20.2	25.3	35.1
Unable	3.7	3.5	4.2	2.7	1.0	1.4	15.4
Right shoulder, internal rotation (\%)							
Fully able	96.1	95.7	96.2	97.0	98.4	97.4	87.6
Partially able	2.3	2.6	2.4	0.9	0.3	2.0	6.9
Unable	1.7	1.7	1.5	2.2	1.2	0.6	5.5
Left shoulder, internal rotation (\%)							
Fully able	96.1	96.1	95.8	96.9	98.8	97.2	87.6
Partially able	1.7	1.4	2.4	0.8	0.0	2.4	3.3
Unable	2.2	2.5	1.8	2.4	1.2	0.4	9.1

(Women's Health and Aging Study, physical assessment, 1992-1995)
'All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Categories for each item may not add up to 100% due to rounding.
${ }^{4}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).

Table 4.10: Purdue Pegboard ${ }^{1,2}$

Test Performance	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{gathered} \text { Moderate }^{3} \\ (\mathrm{~N}=343) \\ \hline \end{gathered}$	ADL Difficulty	
						Receives No Help $(N=478)$	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=181) \\ & \hline \end{aligned}$
Trial with dominant hand Unable to do (\%)	6.8	4.4	6.8	13.6	5.0	4.7	16.5
Time (seconds)							
Mean	30.2	28.5	30.7	34.2	28.7	29.7	35.6
5 th percentile	47.6	41.7	46.4	52.7	42.6	47.2	55.0
25 th percentile	34.5	31.2	35.0	38.4	32.8	33.3	41.6
50 th percentile	28.7	26.8	29.1	32.3	27.6	28.1	34.4
75th percentile	25.0	23.9	25.3	27.0	24.4	24.8	28.4
95 th percentile	21.2	20.7	21.4	22.8	21.0	21.0	22.9
Trial with other hand Unable to do (\%)	9.3	6.4	9.2	17.8	4.5	6.6	26.8
Time (seconds)							
Mean	31.3	29.3	32.0	35.5	30.3	30.7	36.3
5 th percentile	49.6	44.0	47.6	54.5	44.5	47.7	56.0
25th percentile	35.7	32.4	35.9	39.1	34.8	34.4	43.6
50 th percentile	30.0	27.5	30.6	32.6	28.8	29.5	35.1
75th percentile	25.6	24.1	26.2	28.1	25.0	25.6	29.4
95th percentile	21.6	21.0	22.3	22.9	21.2	21.2	23.9

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).

Table 4.11: Opening a Lock with Key ${ }^{1,2}$

Test Performance	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \end{gathered}$	$\begin{array}{r} 85+ \\ (\mathrm{N}=303) \\ \hline \end{array}$	$\begin{aligned} & \text { Moderate }{ }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	Receives Help $(N=181)$
Able to pick up key (\%)	96.8	97.2	97.1	95.1	98.4	97.4	92.0
Able to put key in lock (\%)	94.7	96.3	95.3	88.6	97.5	95.9	85.5
Able to open lock (\%)	93.9	96.1	94.2	86.5	97.4	95.0	83.4
Time to complete entire task (seconds)							
Mean	10.2	8.6	10.7	14.2	9.3	9.7	14.2
5 th percentile	33.1	23.2	30.0	41.6	26.6	27.8	43.5
25 th percentile	13.0	9.4	13.0	17.7	12.6	12.5	18.6
50 th percentile	7.3	6.0	7.7	10.5	7.2	6.9	9.7
75th percentile	4.8	4.2	4.9	6.3	4.7	4.6	6.3
95th percentile	3.1	2.8	3.1	3.8	2.9	3.2	3.6

(Women's Health and Aging Study, physical assessment, 1992-1995)
' All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).

Table 4.12: Putting on Blouse ${ }^{1,2}$

Test Performance	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \end{gathered}$	$\begin{array}{r} 85+ \\ (\mathrm{N}=303) \\ \hline \end{array}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help $(\mathrm{N}=478)$	$\begin{aligned} & \text { Recerves } \\ & \text { Help } \\ & \text { (} \mathrm{N}=181 \text {) } \end{aligned}$
Able to put on blouse (\%)	95.1	95.2	95.3	94.2	98.7	97.2	81.4
Able to button blouse (\%)	81.0	85.8	79.4	71.2	90.4	84.1	52.1
Time to put on and button blouse (seconds) ${ }^{4}$							
Mean	82.7	70.3	88.4	109.4	78.3	80.2	110.5
5 th percentile	190.8	167.3	180.1	213.9	173.4	187.2	200.2
25 th percentile	108.4	81.5	109.5	142.8	100.4	104.4	154.0
50 th percentile	70.8	58.2	80.5	94.6	66.4	69.8	108.3
75 th percentile	50.7	44.0	53.9	66.1	49.1	49.8	72.8
95 th percentile	34.6	30.6	38.0	41.2	32.9	35.0	50.4

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ All variables have less than 3% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in tvvo or more domains (see Chapter 1).
${ }^{4}$ Computed for those who completed task correctly.

Table 4.13: Finding and Dialing a Telephone Number ${ }^{1,2}$

Test Performance	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{array}{r} 85+ \\ (\mathrm{N}=303) \\ \hline \end{array}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \\ & \hline \end{aligned}$	ADL Difficulty	
						Receives No Help $(N=478)$	Receives Help $(N=181)$
Finding the telephone number (\%) ${ }^{4}$							
Found correct number (no prompting)	43.5	52.8	41.2	22.5	46.2	47.6	26.4
Found correct number (prompting)	23.2	19.8	26.1	25.5	23.0	24.2	20.9
Found correct number (with magnifier)	1.3	0.5	1.0	4.7	1.1	1.5	1.4
Found correct number (prompting and magnifier)	0.6	0.5	0.7	0.4	0.4	0.9	0.0
Found incorrect number	7.7	6.7	8.4	8.9	6.5	8.3	8.6
Unable to read print	19.1	15.7	17.9	32.5	19.0	13.8	34.3
Unable to find number	4.6	4.1	4.8	5.6	3.9	3.8	8.5
Dialing the telephone number (\%) ${ }^{4.5}$							
Dialed correct number	90.2	94.9	88.6	80.2	90.6	92.9	81.4
Dialed incorrect number	5.5	2.7	6.6	11.2	5.8	5.2	6.0
Unable to understand	0.3	0.6	0.0	0.4	0.6	0.0	0.7
Unable to dial	1.6	1.0	2.4	0.8	0.8	0.3	6.9
Unable to read numbers on telephone	2.4	0.8	2.4	7.4	2.2	1.6	5.1
Time to complete entire task (seconds) ${ }^{6}$	($\mathrm{N}=851$)	($\mathrm{N}=357$)	($\mathrm{N}=262$)	$(\mathrm{N}=232)$	$(\mathrm{N}=300)$	$(\mathrm{N}=420)$	($\mathrm{N}=131$)
Mean	85.0	72.9	91.7	107.5	81.3	85.0	93.8
5 th percentile	183.9	159.7	174.4	237.0	177.6	178.0	220.8
25th percentile	116.2	97.8	119.4	141.2	109.5	117.1	127.9
50 th percentile	76.6	62.4	86.1	96.1	72.4	74.5	84.5
75 th percentile	48.9	41.7	58.3	61.1	44.8	50.3	62.2
95 th percentile	27.2	22.8	31.3	31.9	24.6	27.8	31.0

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ All variables have less than 5% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ Categories may not add up to 100% due to rounding.
${ }^{5}$ Those unable to find the correct telephone number were given the correct number to dial.
${ }^{6}$ Computed only for those who found and dialed the correct number.

5

The Daily Lives of Disabled Older Women

Eleanor M. Simonsick, Caroline L. Phillips, Elizabeth A. Skinner, Donna Davis, Judith D. Kasper

Day-to-day living circumstances and the immediate physical and social environment can have a tremendous influence on the life quality, functional independence, and capacity of older women in the community. At the same time, functional limitation and disability can profoundly affect daily activities and social conditions. While physical functioning of the older population as a whole and some subgroups is well characterized (Cornoni-Huntley et al., 1986; Prohaska et al., 1993; Short and Leon, 1990), information on living circumstances and daily activities according to level of functional status is much more limited. This chapter describes many aspects of the daily lives of participants in the Women's Health and Aging Study (WHAS), including marital status and living arrangements, living environment, frequency of bedrest and reduced activity, health habits, physical activity, driving practices, eating patterns, social contact and activity, recent life events, and incontinence.

Household Characteristics-Living Arrangement and Housing Type

Table 5.1 describes the living arrangements, household composition, and housing type for this population of disabled older women. Most study participants- 46 percent-lived alone, while 23 percent lived with their spouse and just over 30 percent lived with nonspouse others. While most of the married women lived with only their spouse, one quarter of these women (5.7 percent overall) resided with others as well. The house-
holds were typically small, with only 21 percent having more than two members. Adult children were the most common living companions, followed by spouse, grandchildren, and other relatives including siblings. The presence of nonrelatives in the household was rare.

Household composition varied greatly by participant age and functional status. Just over onethird of those age 65 to 74 years, over half of those age 75 to 84 years, and 61 percent of the oldest group lived alone. Correspondingly, 32, 19, and 6 percent of women resided with their spouse, among those age 65 to 74,75 to 84 , and over 85 years, respectively. The proportion living with others only was similar across age groups, although the youngest tended to have more household members on average. The extended family household (i.e., living with grandchildren) was most common among those age 65 to 74 years (16.4 percent) and relatively rare for those age 85 years and older (5.3 percent). For women in the youngest age group, the presence of an adult child in the home may be more a function of the child's age and economic situation than of participant need (Speare and Avery, 1993).

The observed variation in living arrangement and household composition by age group reflects, in part, racial differences. Twenty-eight percent of study participants were African American, but this varied greatly by age group. Thirty-three, 26, and 20 percent of women age 65 to 74,75 to 84 , and 85 years and older, respectively, were African American (see Chapter 2, Table 2.1). Marital
status and household composition varied greatly by race (data not shown). Twenty-seven percent of White participants were married and lived with their spouse as against 13 percent of the African American women. Comparing African American with White participants, 46 percent versus 25 percent lived with non-spouse others, 31 percent versus 16 percent had at least three members in their household, 33 percent versus 22 percent lived with an adult child, and 23 percent versus 8 percent lived with grandchildren. The proportion who lived alone, however, was more similar, 41 percent in comparison to 48 percent. For the African American participants the most frequent living arrangement was with nonspouse others, whereas White participants were most likely to live alone.

Participants who received help in activities of daily living (ADLs) were the least likely to live alone and most likely to live with nonspouse others. These "others" were most frequently adult children. More than 37 percent of women who received help in ADLs, in contrast to 22 percent who did not receive help, resided with adult children. This group was also more than twice as likely (7.3 percent versus 3.4 percent) to live with nonrelatives as participants with a less severe level of disability.

More than 70 percent of the study population lived in single-family free-standing or semidetached homes; 19 percent lived in apartments and 9 percent resided in some type of specialized retirement housing. The high percentage living in semi-detached, row, or town homes probably reflects the unique housing stock of Baltimore. The oldest age group had the highest proportion of apartment and retirement housing residents. Housing-type did not vary greatly by disability level.

Health Status-Self-Rated Health and Reduced Activity Days

Table 5.2 describes self-rated health status and recent activity limitation. The majority (54 percent) of this population of moderate to severely
disabled women perceived their health as only poor or fair. Nevertheless, 13 percent believed their health was very good and 4 percent reported excellent health. Self-rated health varied by age group, with the oldest reporting slightly better health: 26.5 percent of the oldest group reported very good to excellent health in contrast to 13.7 and 16.9 percent of women age 65 to 74 years and 75 to 84 years, respectively. The most disabled had the highest proportion who rated their health as fair or poor (62 percent), but this was not substantially higher than the other two groups (55 percent and 49 percent). Among women who received help in ADLs, the proportion who rated their health as fair or poor varied by age group: 65 percent of women age 65 to 74 years, 64 percent of women age 74 to 85 years, and 52 percent of the oldest women (data not shown). Although participants were not asked to rate their health in comparison to others of similar age, these data suggest that the perceived health of many older women is influenced by perceptions of their peers.

Eleven percent of the study population reported staying in bed for more than half a day in the 2 weeks preceding the interview because of illness or injury; 30 percent cut down on their activities for 1 or more days. The likelihood of bedrest and reduced activity was greatest in the women younger than 85 years. While the percent reporting bedrest and reduced activity was lower among the oldest women, the average duration among those reporting bedrest and reduced activity was considerably longer in this age group. Women who received help in ADLs more often reported staying in bed and having reduced activity in the preceding 2 weeks than women with less severe disability. Those who received help in ADLs also had the longest average duration of bedrest and reduced activity.

Health Habits-Cigarette Smoking and Alcohol Consumption

Table 5.3 shows current and past smoking practices by age group and disability level. Current cigarette smoking was uncommon in this
population of disabled older women; half the participants never smoked cigarettes and most who did quit 1 year or more before the study baseline. Smoking history varied greatly by age, a function of both birth cohort and survivorship (Harris, 1983). The oldest women had substantially lower rates of current and past smoking; two-thirds never smoked. In contrast, only 42 percent of women age 65 to 74 years never smoked. Smoking history and disability level were unrelated in this population. Among current smokers, the majority smoked less than one pack per day; only 6 percent of the total population smoked more than 20 cigarettes per day. Most of the current smokers had been smoking for more than 40 years. Among former smokers there was greater variation in the number of years smoked: 33 percent smoked fewer than 20 years, 30 percent smoked 20 to 39 years, and 38 percent smoked at least 40 years. Four percent had quit within the previous year.

Table 5.4 presents information on current alcohol consumption. Very few women in this population regularly consumed alcohol. Only 16 percent reported that they usually drink alcoholic beverages at least once every week, and 10 percent reported having at least four drinks per week. Most of the women who regularly consumed alcohol had one to two drinks per occasion. The frequency of drinking in this group ranged from 1 day a week to every day, with 39 percent reporting drinking 5 or more days a week. There was little notable variation in drinking habits by age or disability level in the study population, with the exception that among women who drank, the most disabled rarely had more than one drink per occasion.

Sleep Patterns

Participants were asked the number of hours they usually slept at night and the number of hours they usually slept during the day. Table 5.5 presents data on nighttime, daytime, and total hours of sleep. For the general adult population, 7 to 9 hours of nighttime sleep is considered adequate and consistent with good health (Belloc and

Breslow, 1972). In this population of older disabled women, fewer than half slept between 7 and 9 hours at night. The majority of the remainder slept 4 to 6 hours per night. Daytime sleep was common, with more than 40 percent sleeping some time during the day. Most napped 1 hour or less, although 13 percent got 2 hours and 5 percent got 3 or more hours of sleep during the daytime. For many participants, daytime sleep reduced the nighttime deficit. Combining nighttime and daytime sleep, about half got 7 to 9 hours and about one-third slept 6 or fewer hours in a 24 -hour period.

Hours of nighttime sleep did not vary by age or functional status. The likelihood of daytime sleep, however, increased modestly with increasing age and contributed to the slightly higher percentage who slept 10 or more hours per day in the oldest age group (21 percent in contrast to 11 percent and 12 percent for women age 65 to 74 years and 75 to 84 years, respectively). Similar to those age 85 years and older, around 20 percent of the most severely disabled slept 10 or more hours in a 24 hour period.

Physical Activity and Exercise

Table 5.6 describes the frequency of participation in five physically strenuous activities performed most commonly by older women-walking, household chores, outdoor chores, dancing, and regular exercise programs. More than 60 percent of participants reported performing some type of physical activity in the past 2 weeks. The most common activity overall was doing household chores, followed by walking for exercise, although in the oldest age group walking was the more frequent activity. Fourteen percent participated in regular exercise programs, which could include stretching or strengthening activities. Outdoor chores such as gardening were done by 12 percent of the population. Dancing and bowling were uncommon, with less than 6 percent and 2 percent, respectively, reporting participation (data not shown). With the exception of walking, the proportion who participated in each activity de-
creased with increasing age, particularly for household and outdoor chores. The percent who did any physical activity also decreased with increasing age. As expected, participation in physical activity also declined with increasing severity of disability. Women with moderate disability and those with difficulty in ADLs who did not receive help reported similar types and amounts of physical activity. Among women who received ADL help, fewer than one-third did any physical activity, in contrast to over two-thirds of the less severely disabled. Walking was the predominant activity reported by the most severely disabled women.

The amount of time spent in physical activity varied widely. Thirty-eight percent were completely inactive, 16 percent spent less than 1 hour per week in any activity, 20 percent spent 1 to 3 hours and 25 percent were physically active more than 3 hours per week. Hours per week spent being physically active declined with increasing age in the total population and in the subgroup of women who reported any physical activity. For instance, among women age 65 to 74 years who did any physical activity, 48 percent were active 3 hours per week; among those age 85 years and older who did any physical activity, 27 percent were active at least 3 hours per week. Among women who reported walking for exercise, hours spent per week did not decline with increasing age.

Table 5.7 provides data on the number of blocks walked and flights of stairs climbed per week and self-reported walking pace. Distance walked gives a different picture of activity level than time spent walking for exercise per week (Table 5.6). The majority of participants walked less than 7 blocks (about $1 / 2$ mile) over a 1 -week period. Distance covered declined with increasing age even after excluding the non-ambulatory. This contrasts with the relationship between age and walking time presented in Table 5.6. Casual strolling was by far the most frequently reported walking pace, over 2.5 times more common than average- to normal-paced walking. Among the women who could walk across a small room, 22
percent did not climb stairs in a typical week, 40 percent climbed between 1 and 20 flights, and 39 percent climbed more than 20 flights per week. The number of flights climbed per week decreased substantially with increasing age. Walking pace, blocks walked, and stairs climbed per week also diminished with increasing severity of disability. This decline was largely a function of higher rates of inability to walk in the most disabled group, although even among the ambulatory, a reduction in blocks walked and flights climbed was observed. Overall, 28 percent walked at least 1 block per day, on average; only 16 percent of the oldest old and 8 percent of the most severely disabled walked this much.

This cohort of older disabled women reported higher levels of participation in physical activity and exercise than might be expected given the high prevalence of difficulty in mobility-related tasks (Table 2.2). The levels of participation in walking and in any physical activity were surprisingly similar to those observed in a general population of older persons (Seigel et al., 1995). While the majority of these women engaged in some form of physical activity, much of it was related to household chores, particularly for the youngest age group. Although walking was also common, the amount of time spent walking and the distances covered were generally short and declined with age.

Driving Practices

The ability to drive a car and having access to a car and driver are important aspects of social functioning. Table 5.8 describes driving status, who usually drives, and the reasons for any change in driving practices. Twenty-five percent of participants were current drivers, 24 percent had quit driving, and 51 percent had never held a driver's license. Although 25 percent could drive, 19 percent were the usual driver (76 percent of the women who could drive) when they traveled by car. Most typically, the usual driver resided outside the participant's home. Six percent of participants reported they never traveled by car. Among
the current drivers, the majority drove less than they used to because of health or vision problems, and among those who had stopped driving, the majority stopped for the same reasons. Another 45 percent quit driving for other reasons, usually related to the costs of buying and maintaining a car.

Driving practices varied by age group, with only 7 percent of women age 85 years and older still driving compared with 32 percent of women age 65 to 74 years. A much higher percentage of the oldest women had quit driving, however. The proportion who never held a license was unrelated to age group. The oldest women were also the least likely to travel by car and, when they did, were most likely to be driven by someone residing outside their home. Women who received ADL help had a very low rate of current driving; most of them had quit due to health problems.

Eating and Meal Preparation

Problems chewing and swallowing, difficulty preparing food, and social isolation are major factors that contribute to poor or inadequate nutrition in older adults (Fischer and Johnson, 1990). Table 5.9 reports the prevalence of difficulties related to eating and meal preparation and describes who prepares meals in the participant's household and the participant's eating environment. Nearly one-fifth of study women reported problems chewing or swallowing that limited their ability to eat. The prevalence of this problem was highest in the youngest age group and in women who received help in ADLs.

Almost four-fifths of study participants had the primary responsibility for preparing meals in their households. This rate decreased from 82 percent of women age 65 to 74 years to 65 percent of women age 85 years and older, largely because of health problems. Among women who received help with ADLs, only 37 percent prepared the meals in their household in contrast to 86 percent of less disabled women. It is notable that among women age 65 to 74 years, only 58 percent of
whom lived alone or with only their husband (Table 5.1), 82 percent had the main responsibility for meal preparation. Thus, despite their physical limitations, many of these women made substantial contributions to the household.

The majority of participants ate meals alone. This was not merely a function of living arrangement, because a higher proportion of women age 65 to 84 years ate alone than lived alone (Table 5.1). Meal services such as "Meals on Wheels," "Eating Together" programs, and residential group meals were not widely used by this population of disabled women. The majority of women either had no difficulty preparing nieals or they received assistance from someone who resided either with them or outside their home. Of those who had access to group meals at their place of residence-about 8 percent- only about half used this service. Use of meal services was highest in the most severely disabled, but only a small proportion of women who had difficulty preparing meals due to health problems used these services.

Social Contact and Activity

The size of one's social world and the amount of social contact and activity have important implications for life quality. Table 5.10 presents size of life space, the distance participants venture from their home in a typical week; frequency of leaving the home; number of telephone contacts and face-to-face contacts per week; and frequency of attendance at church and other functions reported by this population of disabled women. Social contact and life space varied substantially within and across subgroups of this population. A small but meaningful proportion of women appeared to be fairly isolated and homebound: 23 percent had no face-to-face contact with persons residing outside the home in a typical week, 15 percent never left their home, and 34 percent left their home three or fewer times per week. On the other hand, a sizable percentage were out and about every day. Forty-one percent left their home more than once a day, 49 percent were on the
phone with relatives or friends more than once a day, and the majority had a life space extending beyond the neighborhood.

Social contact tended to diminish with age. The oldest women had the lowest frequency of telephone and face-to-face contact with persons residing outside their home. The majority of the oldest women did not leave their neighborhood in a typical week and had the highest proportion who did not leave their home (29 percent). Similar trends were observed for disability, with the most severely disabled having the highest rates of low contact and not leaving the home.

Over half of these disabled older women participated in church and church-related events in the past year; the majority attended regularly, at least twice a month. About one-third of participants usually attended other social functions, such as concerts, movies and plays, about once a month. Participation in this type of social activity diminished with increasing age and severity of disability.

Life Events

In addition to the day-to-day aspects of one's social and physical environment, major life events, such as the death of a loved one, can have a tremendous impact on affect and feelings of life quality (Holmes and Rahe, 1967). Table 5.11 shows the frequency of six major life events occurring in the past year for this population of disabled older women. Nearly half of the study participants reported the loss of a spouse, close relative, and/or close friend through death in the past year; 7 percent had become separated from a child, friend, or relative on whom they depended for help; and 7 percent lost a pet. Nineteen percent reported giving up a hobby or activity important to them in the past year. Seven percent of all participants (29 percent of the married women) reported that their husband suffered a serious illness or accident. Nearly 70 percent of participants experienced at least one of these events in the past year. The likelihood of death of or separation
from relatives or close friends in the past year decreased with age in this population, a function, in part, of less opportunity for such losses to occur. Only 5 percent of the oldest women were still married, and many had outlived most of their friends. With the possible exception of giving up a hobby or favored activity, the rate of major life events did not vary by disability level.

As spousal health has been found to be a major predictor of depressive symptomatology (Simonsick, 1993), married women were asked some additional questions about the health status of their spouse. Fifty-six percent of the married women rated their husband's health as fair or poor, and 30 percent reported that their husband's health had become worse in the past 6 months. Poor or declining health may seriously reduce the capacity of the husband to provide companionship and caregiving assistance.

Incontinence

Bowel and bladder incontinence are socially embarrassing and potentially disruptive conditions that can have multiple effects on the daily activities and social relationships of older women (Wyman et al., 1990). Severe incontinence is a major contributing factor in the decision to institutionalize an older person (Ouslander et al., 1982). Table 5.12 shows the prevalence and severity of bowel and bladder incontinence. Eighteen percent of participants reported occasional bowel incontinence; only 1 percent soiled themselves "all the time." There was a small but consistent ageassociated increasing trend in prevalence of bowel incontinence from 17.5 percent in women age 65 to 74 years to 21.9 percent in women age 85 years and older. Prevalence also increased with increasing severity of disability, from 12 percent in the moderately disabled to nearly 30 percent in women receiving help in ADLs.

Bladder incontinence was common in this population, with nearly 65 percent reporting having lost control of their urine at some time
during the past year. The majority (5l percent) had problems because they could not get to the toilet quickly enough; 40 percent had stressrelated incontinence, losing bladder control when coughing, sneezing, laughing, or lifting; and 27 percent reported having both problems. Although the annual prevalence was exceptionally high, less than half reporting incontinence lost bladder control on a weekly basis (30.6 percent overall). Nevertheless, 13.6 percent lost control at least once a day. The amount of urine leakage was generally small, with only 7.9 percent overall losing more than one-quarter cup per episode.

The prevalence of bladder incontinence varied somewhat by age, with the oldest age group having the lowest prevalence of any type of incontinence in the past year. Among women who reported problems with bladder control, frequency of episodes and amount of urine lost did not vary consistently by age group. The prevalence of bladder incontinence increased moderately with increasing severity of disability, from 60 percent in the moderately disabled women to 70 percent among women receiving ADL help. Among those with urinary incontinence, the frequency of episodes did not vary much by disability level; the likelihood of substantial loss of urine (more than one-quarter cup), however, was twice as great in the most severely disabled compared with the moderately disabled (21.0 percent versus 8.5 percent).

Summary

This population of older disabled women exhibits great diversity in social environments, activities, health habits, and other life circumstances. Age and level of disability were associated with many of the factors examined, but it is also clear that age and disability do not dictate social environment. The data presented only begin to describe the tremendous range of living environments and social conditions these women face on a daily basis. Briefings by the interviewers and nurse examiners in the WHAS have conveyed the wide spectrum of living environments among
these older disabled women. At one extreme are women who live in the most severely impoverished circumstances: unsanitary, dilapidated homes; homes with inadequate light, heating, and plumbing; neighborhoods that suffer from pervasive illicit drug activity and violent behavior; and extreme poverty. At the other extreme are the affluent women who reside in comfortable, wellappointed homes in secure neighborhoods and have paid help, which may include a housekeeper, a cook, and 24 -hour nursing care. The rest of the study population is more or less equally distributed between these extremes of poverty and wealth. Despite extreme differences in social and economic resources, these women share many fea-tures-functional limitation and disability, chronic disease, and old age. Disentangling the roles of disease and social circumstances in the disabling process could provide important insights for maintaining physical function, preserving community existence, and improving life quality.

References

Belloc NB, Breslow L. (1972). Relationship of physical health status and health practices. Prev Med 1:409-421.

Cornoni-Huntley J, Brock DB, Ostfeld AM, Taylor JO, Wallace RB. (1986). Established Populations for Epidemiologic Studies of the Elderly: Resource Data Book. DHHS Pub. (NIH) No. 86-2443. Washington, DC: U.S. Government Printing Office.

Fischer J, Johnson MA. (1990). Low body weight and weight loss in the aged. J Am Dietetic Assoc 90:1697-1706.

Harris JE. (1983). Cigarette smoking among successive birth cohorts of men and women in the United States during 1900-80. J Natl Cancer Inst 71:473-479.

Holmes TH, Rahe RH. (1967). The social adjustment rating scale. J Psychosomatic Res 11:213218.

Ouslander JG, Kane RL, Abrass JB. (1982). Urinary incontinence in elderly nursing home patients. JAMA 248:1194-1198.

Prohaska T, Mermelstein R, Miller B, Jack S. (1993). Functional status and living arrangements. In: Van Nostrand JF, Furner SE, Suzman R, eds. Health Data on Older Americans: United States, 1992. Vital Health Stat 3(27):23-39.

Short P, Leon J. (1990). Use of home and community services by persons age 65 and older with functional difficulties. National Medical Expenditure Survey Research Findings No. 5. Agency for Health Care Policy and Research. DHHS Pub. No. (PHS) 90-3466. Rockville, MD: Public Health Service.

Siegel PZ, Brackbill RM, Heath GW. (1995). The epidemiology of walking for exercise: Implications for promoting activity among sedentary groups. Am J Public Health 85:706-709.

Simonsick EM. (1993). Relationship between hus. band's health status and the mental health of older women. J Aging Health 5:319-337.

Speare A, Avery R. (1993). Who helps whom in older parent-child families. J Gerontol Soc Sci 48:S64-S73.

Wyman JF, Harkins SW, Fantl JA. (1990). Psychosocial impact of urinary incontinence in the community-dwelling population. J Am Geriatr Soc 38:282-288.

Table 5.1: Living Arrangement and Type of Living Quarters (Percent) ${ }^{1,2}$

Living Arrangement and Housing	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level							
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75.84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \\ \hline \end{gathered}$	$\begin{aligned} & M_{0 d e r a t e}{ }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty						
						Receives No Help ($N=478$)	Receives Help ($N=181$)					
Living arrangements Household composition ${ }^{4.5}$												
Alone	46.1	34.6	53.0	61.2	44.6	54.3	26.4					
Spouse only	17.4	23.1	15.8	5.1	19.9	15.0	19.0					
Spouse and others	5.7	9.4	3.6	0.8	4.9	5.3	8.5					
Others only	30.8	32.9	27.7	32.9	30.6	25.4	46.1					
Number of others ${ }^{5,6}$												
None	46.1	34.6	53.0	61.2	44.6	54.3	26.4					
1	33.4	37.1	32.1	25.9	35.0	29.2	41.7					
2	11.6	15.3	8.2	9.9	11.5	10.0	16.0					
3 or more	9.0	13.0	6.8	3.1	8.9	6.5	15.8					
Household members ${ }^{4.7}$												
Spouse	23.1	32.5	19.3	6.0	24.8	20.3	27.5					
Children	24.8	30.2	20.6	20.6	22.8	21.9	37.2					
Siblings	3.7	3.9	2.7	5.6	4.7	2.8	4.0					
Grandchildren	12.3	16.4	10.6	5.3	15.0	8.6	17.1					
Other relatives	7.9	7.8	8.0	7.9	7.5	5.3	15.8					
Non-relatives	4.2	4.6	3.8	4.0	3.7	3.4	7.3					
Type of living quarters ${ }^{\text {5,8 }}$												
Detached single-family house	20.3	19.2	20.8	22.0	19.2	20.8	21.1					
Apartment ${ }^{9}$ 碞	18.6	15.8	19.3	25.4	18.3	20.2	15.2					
Semi-detached row house or town house ${ }^{10}$	50.9	57.8	48.3	37.3	50.6	50.0	54.1					
Retirement community or apartments	9.0	6.4	9.9	13.9	10.3	8.3	8.0					
Other ${ }^{11}$	1.2	0.8	1.6	1.4	1.7	0.7	1.5					

(Women's Health and Aging Study, baseline interview, 1992-1995)
' All variables have less than 3\% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ What are the names of all persons living or staying in the household? Name, relationship to the participant, sex, and age given.
${ }^{5}$ Categories may not add up to 100% due to rounding.
${ }^{6}$ Besides yourself, how many other people live in your household?
${ }^{7}$ Percent of the total number of participants having at least one household member in the category.
${ }^{8}$ Based on interviewer's description.
${ }^{9}$ Includes detached two-to-four family house or apartment; apartment house (five or more units); and apartment in partially commercial structure.
${ }^{10}$ Two or more units in a row.
${ }^{11}$ Includes apartment in a semi-detached or row house; and house and art studio combination.

Table 5.2: Health Status ${ }^{1,2}$

Health Status	$\begin{gathered} \begin{array}{c} \text { Total } \\ (\mathrm{N}=1002) \end{array} \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \end{gathered}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	Receives Help $(N=181)$
At the present time, would you say that your health is . . . ?(\%) ${ }^{4}$ Excellent Very good Good Fair Poor							
	3.6	2.1	3.5	8.2	3.5	3.2	4.7
	13.4	11.6	13.4	18.3	13.2	15.8	7.1
	28.9	29.6	27.6	30.3	34.3	25.9	26.1
	35.5	38.4	34.1	30.6	33.6	38.9	29.8
	18.7	18.3	21.4	12.5	15.4	16.3	32.3
During the last 2 weeks or 14 days, did you stay in bed for more than half a day because of illness or injury? Yes (\%) If yes: Mean days in bed ${ }^{5}$ Number of days in bed ${ }^{4}$ $\begin{aligned} & 1-3(\%) \\ & 4-7(\%) \\ & 8-14(\%) \end{aligned}$							
	11.4	11.5	12.7	7.8	7.8	9.7	24.0
	6.0	6.3	5.3	8.2	5.1	5.5	7.2
	49.3 21.3	44.3 24.7	58.1 17.7	32.4 22.3	56.1 24.8	57.0 14.9	36.1 26.1
	29.4	31.0	24.2	45.3	19.2	28.1	37.8
Were there any (other) days when you cut down on the things you usually do because of illness or injury? Yes (\%) If yes: Mean days cut down ${ }^{6}$ Number of days cut down ${ }^{4}$ 1-3 (\%) 4-7 (\%) 8-14 (\%)							
	30.0	36.0	28.3	17.2	27.7	29.3	37.0
	5.7	5.7	5.5	6.7	4.9	5.7	7.1
	47.3	46.3	50.3	40.2	52.7	49.3	33.4
	28.4	30.2	27.6	21.3	29.5	25.7	33.0
	24.3	23.6	22.1	38.6	17.7	25.0	33.6

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 2% missing data. Results are based on non-missing data.
${ }^{2}$ Percents and means are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }_{5}^{4}$ Categories may not add up to 100% due to rounding.
${ }^{5}$ During the last 2 weeks, how many days did you stay in bed more than half the day because of illness or injury?
${ }^{6}$ How many days did you cut down, not counting those when you stayed in bed?

Table 5.3: Cigarette Smoking (Percent) ${ }^{1.2}$

Smoking Status ${ }^{3}$	Total	Age Group			Disability Level		
		65-74	75-84	$85+$	Moderate ${ }^{4}$	ADL Difficulty	
						Receives No Help	Receives Help
All Participants	$(\mathrm{N}=1002)$	$(\mathrm{N}=388$)	$(\mathrm{N}=311)$	($\mathrm{N}=303$)	($\mathrm{N}=343$)	$(\mathrm{N}=478$)	($N=181$)
Current smoking status ${ }^{5}$ Never smoked Former smoker who quit more than 1 year ago Former smoker who quit 1 year ago or less Current smoker	49.9	41.8	52.4	66.6	44.5	51.2	57.3
	33.1	36.1	32.5	25.8	34.1	32.7	32.1
	3.9	4.6	3.8	2.1	5.8	3.2	2.1
	13.1	17.5	11.2	5.6	15.7	12.9	8.5
Current and Former Cigarette Smokers	$(\mathrm{N}=469)$	$(\mathrm{N}=224)$	$(\mathrm{N}=147)$	($\mathrm{N}=98$)	($\mathrm{N}=182$)	$(\mathrm{N}=217$)	$(\mathrm{N}=70)$
Cigarette pack years ${ }^{6}$Less than 20$20-39$$40-59$60 or more							
	43.7	40.4	46.3	51.1	42.2	43.8	47.4
	18.5	16.8	19.5	23.8	18.0	19.1	18.2
	17.6	19.1	17.1	11.9	18.2	18.0	15.1
	20.1	23.7	17.1	13.2	21.6	19.2	19.3
Current Cigarette Smokers	$(\mathrm{N}=115)$	($\mathrm{N}=66$)	$(\mathrm{N}=34)$	($\mathrm{N}=15$)	($\mathrm{N}=49$)	($\mathrm{N}=51$)	($\mathrm{N}=15$)
Cigarettes per day ${ }^{7}$							
1-19 20-39	51.4	51.1	50.1	60.6	43.3	58.1	53.9
20-39	40.9	40.4	41.9	39.4	51.6	32.1	36.8
40 or more	7.8	8.5	8.0	0.0	5.1	9.8	9.3
For how many years have you smoked?							
1-19	2.3	0.0	5.9	3.1	4.8	0.0	1.8
20-39	12.1	15.7	8.3	0.0	17.6	7.5	10.2
40-59	58.8	79.9	30.4	22.4	44.9	73.3	51.8
60 or more	26.9	4.5	55.4	74.6	32.7	19.3	36.3
Former Cigarette Smokers	$(\mathrm{N}=354)$	$(\mathrm{N}=158)$	($\mathrm{N}=113$)	($\mathrm{N}=83$)	$(\mathrm{N}=133)$	$(\mathrm{N}=166)$	($\mathrm{N}=55$)
Cigarettes per day ${ }^{7}$							
1-19	51.7	47.2	52.6	68.6	50.7	50.7	56.8
20-39	34.8	34.0	37.9	27.0	34.6	37.3	28.0
40 or more	13.5	18.8	9.5	4.4	14.7	12.0	15.2
For how many years did you smoke?							
1-19	32.6	32.1	31.9	37.7	30.0	31.3	42.9
20-39	29.8	28.5	31.0	31.3	23.5	39.0	18.4
40 or more	37.6	39.4	37.2	31.1	46.5	29.8	38.7

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 3% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Categories for each item may not add up to 100% due to rounding.
${ }^{4}$ No ADL difficulty; disabled in two more domains (see Chapter 1).
${ }^{5}$ Which of the following best describes your current cigarette smoking status?
${ }^{6}$ (c/20)y, where $c=$ cigarettes (On average, how many cigarettes (do/did) you smoke per day?) and $y=y e a r s$ (For how many years (have/did) you smoke(d)?)
${ }^{7}$ On average, how many cigarettes (do/did) you smoke per day?

Table 5.4: Alcohol Consumption (Percent) ${ }^{1,2}$

Alcohol Consumption	Total	Age Group			Disability Level		
		65-74	75-84	$85+$	Moderate ${ }^{3}$	ADL Difficulty	
						Receives No Help	Receives Help
All Participants	($\mathrm{N}=1002$)	($\mathrm{N}=388$)	($\mathrm{N}=311$)	($\mathrm{N}=303$)	($\mathrm{N}=343$)	$(\mathrm{N}=478)$	($\mathrm{N}=181$)
Do you usually drink alcoholic beverages, including beer, wine, sherry, or liquor, at least once every week? Yes	15.6	16.9	14.5	14.5	17.2	14.9	14.0
Current Alcohol Drinkers ${ }^{4}$	$(\mathrm{N}=154)$	($\mathrm{N}=65$)	($\mathrm{N}=44$)	($\mathrm{N}=45$)	($\mathrm{N}=59$)	$(\mathrm{N}=72)$	($\mathrm{N}=23$)
Average drinks per week ${ }^{5}$ $1-3$	36.3	34.4	36.7	41.6	38.0	32.5	43.0
4-7	37.5	38.2	36.8	37.3	40.5	33.8	41.2
8 or more	26.2	27.4	26.4	21.1	21.5	33.6	15.9
On the days when you drink, about how many drinks do you usually have? 1 2 3 or more							
	54.6	47.3	60.9	62.0	56.8	47.1	71.0
	30.1	29.8	29.7	32.2	26.0	35.8	23.5
	15.3	23.0	9.4	5.8	17.2	17.1	5.6
Over the past 6 months, how many days per week did you typically drink like this? $1-2$ 3-4 5 or more							
	39.0	44.3	30.1	45.1	35.3	39.6	46.1
	22.3	19.7	27.5	16.7	28.1	17.1	22.9
	38.7	36.0	42.4	38.2	36.6	43.3	31.0

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 4% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ Categories for each item may not add up to 100% due to rounding.
${ }^{5} \mathrm{~d}(\mathrm{w})$, where $\mathrm{d}=$ drinks per day (On the days when you drink, about how many drinks do you usually have?) and $\mathrm{w}=$ days (Over the past 6 months, how many days per week did you typically drink like this?)

Table 5.5: Sleep Patterns (Percent) ${ }^{1,2,3}$

Hours of Sleep ${ }^{4}$	$\begin{gathered} \text { Total } \\ (\mathrm{N}=903) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=347) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=269) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=287) \end{gathered}$	Moderate ${ }^{5}$$(N=311)$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=438$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (N=154) \\ & \hline \end{aligned}$
How many hours do you usually sleep at night?							
3 or less	2.7	2.4	2.7	3.4	1.4	3.5	2.9
4 to 6	44.0	43.0	47.5	38.0	43.5	44.9	42.5
7 to 9	47.7	48.3	45.7	50.9	48.9	47.0	47.0
10 or more	5.7	6.3	4.2	7.6	6.3	4.6	7.6
How many hours do you usually sleep during the day?							
None	57.7	61.1	55.4	53.8	57.3	58.7	55.4
1	24.4	24.9	23.5	25.1	25.0	24.6	22.4
2	12.8	9.9	16.0	13.0	12.2	11.9	16.8
3 or more	5.2	4.2	5.1	8.1	5.5	4.9	5.4
Total hours of sleep per day ${ }^{6}$ 3 or less	0.8	1.3	0.0	1.7	0.1	1.3	0.9
4 to 6	33.6	32.2	37.3	28.1	32.9	33.9	34.2
7 to 9	52.5	55.6	50.3	49.5	53.3	54.3	45.7
10 to 12	11.4	9.6	10.9	17.9	11.6	9.2	17.7
13 or more	1.6	1.3	1.5	2.9	2.0	1.3	1.6

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 2% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Due to an error in the administration of the questionnaire the questions were not asked of all eligible participants.
${ }^{4}$ Categories for each item may not add up to 100% due to rounding.
${ }^{5}$ No ADL difficulty; disabled in two more domains (see Chapter 1).
${ }^{6}(\mathrm{n}+\mathrm{d})$, where $\mathrm{n}=$ hours of sleep at night and $\mathrm{d}=$ hours of sleep during the day.

Table 5.6: Participation in Exercise Activities in the Past Two Weeks (Percent) ${ }^{1,2,3}$

Exercise Frequency and Time ${ }^{4}$	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level							
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }^{5} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty						
						Receives No Help ($\mathrm{N}=478$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=181) \\ & \hline \end{aligned}$					
Walked for exercise ${ }^{6}$	33.2	34.6	31.7	32.7	36.2	34.0	24.3					
Times per week ${ }^{7}$												
1-2	13.3	13.9	12.9	12.8	15.5	13.4	8.5					
3-4	5.8	5.9	6.2	4.8	6.2	6.0	4.8					
Over 4	13.8	14.7	12.5	14.8	14.4	14.4	10.8					
Less than 1	12.3	11.5	11.8	16.3	10.4	14.2	11.3					
1 to less than 2	9.6	10.7	9.6	6.1	12.2	8.8	6.1					
2 or more	10.9	12.2	10.1	9.1	13.4	10.6	6.8					
Done moderately strenuous household chores ${ }^{6,9}$	39.2	47.8	36.5	21.5	47.0	45.0	7.3					
12 or more	21.9	24.4 23.4	21.3	16.5	24.5	26.4	4.4					
Less than 1 1 to less than 2	17.6	18.9	17.7	13.3 3.4	18.7	21.9	3.1					
1 to less than 2 2 or more	7.3 14.1	9.6 19.0	6.4	3.4	10.5	6.9	1.8					
2 or more	14.1	19.0	12.2	4.8	17.5	15.8	2.3					
Done moderately strenuous outdoor chores ${ }^{6,10}$	12.0	14.8	10.8	6.9	12.6	15.8	0.0					
Times per week ${ }^{7}$12 or more												
	6.0	8.8	4.2	2.6	6.9	7.4	0.0					
	5.9	5.8	6.6	4.3	5.7	8.2	0.0					
Hours per week ${ }^{8}$												
Less than 1	4.2	5.2	3.6	2.7	6.6	3.9	0.0					
1 to less than 2	2.7	4.1	2.0	0.2	2.6	3.7	0.0					
2 or more	5.0	5.2	5.2	4.0	3.4	8.0	0.0					
Danced ${ }^{6}$	5.5	6.9	4.9	3.4	6.2	5.6	4.1					
Times per week ${ }^{7}$12 or more												
	4.4	5.1	4.0	3.1	5.1	4.0	4.1					
	1.0	1.4	0.8	0.3	1.1	1.2	0.0					
Hours per week ${ }^{8}$ Less than 1	4.4	5.7	38	2.2	5.3	4.1	3.5					
1 or more	1.0	0.8	1.0	1.2	0.9	1.1	0.6					
Participated in any regular exercise program ${ }^{6.11}$	14.2	15.2	14.6	10.4	14.3	16.6	7.3					
Times per week ${ }^{7}$												
1-2	3.7	4.6	3.5	1.8	3.3	4.8	1.3					
3-4	2.1	2.8	1.6	1.3	2.0	2.5	1.3					
Over 4	8.4	7.8	9.5	7.3	9.0	9.3	4.6					
Hours per week ${ }^{8}$												
Less than 1	4.1	4.3	3.8	3.9	3.4	5.3	2.0					
1 to less than 2	4.9	4.9	5.3	3.9	5.1	5.5	2.8					
2 or more	5.2	6.0	5.4	2.6	5.8	5.8	2.5					
Any exercise activity ${ }^{12}$	62.0	67.0	60.7	50.7	69.0	67.5	32.0					
Hours per week												
Less than 1	16.3	12.2	18.8	21.7	13.8	19.4	13.0					
1 to less than 2	13.2	15.2	12.9	7.9	18.8	12.2	4.2					
2 to less than 3	7.1	7.2	7.6	5.8	6.6	7.7	6.7					
3 or more	24.7	31.9	21.1	13.8	29.4	27.3	7.9					

(Women's Health and Aging Study, baseline interview, 1992-1995)

(Continued)

' All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Participants who reported being unable to walk across a small room without help from another person or special equipment were presumed to be non-participants in exercise activities.
${ }^{4}$ Rates for times per week and hours per week may not add up to rate for report of doing exercises because of (1) rounding and (2) amount of exercise not reported.
${ }^{5}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{6}$ The question is in the form "During the past two weeks have you . . . ?"
7Response to "How often have you [physical activity] in the past two weeks?" divided by 2.
${ }^{8}$ Derived from responses to: (1) How often have you (physical activity! in the past two weeks? (2) What is the average amount of time that you spent per session?
9 ". . . like scrubbing and vacuuming?"
10 " . . . like mowing or raking the lawn, shoveling snow, or working in the garden?"
" " . . . such as stretching or strengthening exercises, swimming or any other regular exercise program?"
${ }^{12}$ Includes activities listed in the table, as well as bowling.

Table 5.7: Walking and Stair Climbing in the Past Week (Percent) ${ }^{1,2}$

Walking and Stair Climbing ${ }^{3}$	$\begin{gathered} \text { Total } \\ \langle\mathrm{N}=1002\rangle \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65.74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{4} \\ & (N=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=181) \end{aligned}$
```City blocks or equivalent walked }\mp@subsup{}{}{5 Cannot walk}\mp@subsup{}{}{6 Less than 1 1-6 7-12 Over }1```							
	7.1	5.7	7.6	9.4	0.1	4.9	27.4
	32.5	26.4	31.9	51.5	28.3	31.8	42.8
	32.0	32.9	34.3	23.3	36.0	32.8	21.8
	12.1	11.9	13.7	8.1	14.4	14.1	1.8
	16.4	23.1	12.4	7.7	21.3	16.4	6.1
When you walk outside your home, what is your usual pace?   Does not walk ${ }^{7}$   Casual strolling   Average to normal   Fairly brisk   Brisk or striding							
	17.1	14.1	16.3	28.4	6.2	14.1	48.3
	58.6	57.5	59.9	58.6	58.5	64.6	42.1
	20.8	22.8	22.2	11.3	31.3	17.2	9.1
	3.3	5.4	1.7	1.4	4.0	3.7	0.4
	0.2	0.3	0.0	0.5	0.1	0.3	0.0
Flights of stairs climbed ${ }^{8}$							
Cannot walk ${ }^{6}$	7.1	5.7	7.6	9.4	0.1	4.9	27.4
0 $1-20$	20.1	11.9	23.1 34.0	35.8 32.8	15.6 40.3	21.9	24.4
21-40	18.5	21.0	17.7	13.7	20.8	19.5	11.2
Over 40	17.5	20.4	17.6	8.8	23.2	16.7	8.1

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than $1 \%$ missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Categories for each item may not add up to $100 \%$ due to rounding.
${ }^{4}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{5}$ During the last week, about how many city blocks or their equivalent did you walk?
${ }^{6}$ Participants reporting that they were "Unable" to walk across a small room.
${ }^{7}$ Includes participants reporting that they were "Unable" to walk across room or did not walk outside home.
${ }^{8}$ In the last week, how many flights of stairs did you climb up?

Table 5.8: Driving Practices (Percent) ${ }^{1,2}$

Driving Status and History	Total	Age Group			Disability Level		
		65-74	75-84	$85+$	Moderate ${ }^{3}$	ADL Difficulty	
						Receives   No Help	Receives Help
All Participants	( $\mathrm{N}=1002$ )	$(\mathrm{N}=388)$	( $\mathrm{N}=311$ )	( $\mathrm{N}=303$ )	( $\mathrm{N}=343$ )	$(\mathrm{N}=478)$	( $\mathrm{N}=181$ )
Participant driving status ${ }^{4.5}$ Current driver	25.4	32.3	24.8	6.7	29.3	28.9	7.6
Former driver	23.6	16.2	25.7	39.4	20.2	23.4	31.0
Never licensed	51.0	51.5	49.5	53.9	50.5	47.7	61.4
Usual driver ${ }^{5,6}$							
Participant	19.3	23.3	20.0	5.6	22.5	22.9	2.9
Someone in home	26.7	30.1	24.6	22.2	25.9	21.6	42.4
Someone outside home	47.6	42.1	47.8	63.4	46.0	49.2	46.6
Does not travel by car	6.4	4.5	7.6	8.8	5.6	6.3	8.2
Current Drivers	$(\mathrm{N}=222)$	$(\mathrm{N}=125)$	$(\mathrm{N}=75)$	$(\mathrm{N}=22)$	( $\mathrm{N}=90$ )	( $\mathrm{N}=121$ )	( $\mathrm{N}=11$ )
Drives less because of health or vision ${ }^{7}$	60.2	53.0	67.6	88.8	61.3	56.5	91.8
Former Drivers	( $\mathrm{N}=264$ )	( $\mathrm{N}=64$ )	$(\mathrm{N}=80$ )	( $\mathrm{N}=120$ )	( $\mathrm{N}=80$ )	( $\mathrm{N}=126$ )	( $\mathrm{N}=58$ )
Did you stop driving for health or vision reasons or for some other reason? ${ }^{5}$							
Health	36.9	33.3	38.9	37.8	20.4	38.0	56.9
Vision	18.6	22.9	15.3	19.1	27.1	12.4	20.1
Other reason	44.5	43.8	45.7	43.1	52.5	49.6	23.0

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than $1 \%$ missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1 ).
${ }^{4}$ Driving status was determined by the following questions: (1) When you go somewhere by car, who usually drives? (2) Have you ever had a driver's license? (3) Do you still drive?
${ }^{5}$ Categories may not add up to $100 \%$ due to rounding.
${ }^{6}$ When you go somewhere by car, who usually drives?
7 "Yes" response to "Over the last year, have you cut down on the amount you drive or when you drive (such as not driving at night or in the rain) because of your health or vision?"

Table 5.9: Eating and Meal Preparation (Percent) ${ }^{1}$

		Age Group					

(Women's Health and Aging Study, screening and baseline interviews, 1992-1995)
${ }^{1}$ Descriptive statistics are based on weighted data.
${ }^{2}$ No ADL difficulty; disabled in two more domains (see Chapter 1).
${ }^{3}$ These variables have less than $1 \%$ missing data. Results are based on non-missing data.
${ }^{4}$ The screener questions were "Because of a health or physical problem, do you have any difficulty preparing your own meals by yourself?" and "By yourself, how much difficulty do you have?" The presence of the condition was confirmed in the baseline interview.
${ }^{5}$ Categories may not add up to $100 \%$ due to rounding.
${ }^{6}$ Not asked if participant indicated that she did not prepare meals, but percentages are based on total populations.
${ }^{7}$ Due to an error in the administration of the questionnaire the question was not asked of all eligible participants.
${ }^{8}$ Does (a/any other) friend or relative come into your home to help you prepare meals or bring you meals on a regular basis?
${ }^{9}$ Do you regularly go out to eat at an Eating Together program such as at a Senior Center or church?

Table 5.10: Social Contact and Activity (Percent) ${ }^{1,2}$

Activity ${ }^{3}$	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \\ \hline \end{gathered}$	$\begin{gathered} \text { Moderate }^{4} \\ (\mathrm{~N}=343) \\ \hline \end{gathered}$	ADL Difficulty	
						Receives No Help $(\mathrm{N}=478)$	Receives Help $(N=181)$
Life space ${ }^{5}$							
Home	14.5	10.6	15.1	24.2	7.6	13.4	31.9
Neighborhood	19.3	17.7	17.9	27.6	20.8	17.3	21.7
Beyond neighborhood	66.2	71.7	67.0	48.2	71.6	69.3	46.5
Number of times leaves home per week ${ }^{6}$							
Less than 1	16.6	13.2	15.8	28.9	9.3	14.9	36.6
1-3	17.2	14.5	19.8	17.7	19.9	15.6	15.8
4-7	25.6	24.6	25.8	28.2	24.4	28.0	21.8
Over 7	40.6	47.7	38.6	25.2	46.5	41.6	25.7
Number of telephone contacts per week ${ }^{7}$							
3 or fewer	23.1	19.1	24.5	30.9	19.7	23.2	29.9
$4-7$	28.1	26.7	28.9	29.9	25.6	30.0	27.9
Over 7	48.8	54.1	46.6	39.2	54.7	46.8	42.2
Number of face-to-face contacts per week ${ }^{8}$							
Less than 1	23.4	18.5	25.1	33.2	17.9	25.0	30.7
1-3	46.0	49.9	43.9	40.4	49.3	43.9	45.1
4 or more	30.6	31.5	31.1	26.4	32.8	31.2	24.2
Attends church or church functions ${ }^{9}$							
Never	45.1	45.2	43.7	49.0	37.8	45.9	58.2
Once a month or less	8.0	7.5	8.8	7.5	5.8	8.2	12.0
At least twice monthly	46.8	47.3	47.5	43.5	56.4	45.8	29.8
Attends other functions ${ }^{10}$							
Never	67.4 21.8	61.0	70.6	77.4	62.2	66.0	82.2
Once a month or less At least twice monthly	21.8	27.2	18.8	14.2	26.6	21.0	14.3
At least twice monthly	10.8	11.8	10.6	8.4	11.3	13.0	3.5

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than $1 \%$ missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Categories for each item may not add up to $100 \%$ due to rounding.
${ }^{4}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{5}$ During a typical week, do you leave your neighborhood? During a typical week, weather permitting, do you go outside the house, but stay in your neighborhood?
${ }^{6}$ Tell me how many times in a typical week that you leave your neighborhood? How many times in a typical week do you go outside but stay in your neighborhood? Responses were converted to real-number estimates of times per week and then summed to produce the total.
7 In a typical week, about how many times do you talk on the telephone with friends, neighbors or relatives?
${ }^{8}$ How often do you get together with friends, neighbors or relatives?
${ }^{9}$ Do you attend church or church functions? How often do you attend church or church functions?
${ }^{10}$ Do you attend other events such as concerts, movies, or ethnic festivals? How often do you attend other events?

Table 5.11: Life Events in the Past Twelve Months (Percent) ${ }^{1.2}$

Event	Total$(N=1002)$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{array}{r} 85+ \\ (\mathrm{N}=303) \\ \hline \end{array}$	$\begin{aligned} & \text { Moderate }{ }^{3} \\ & (N=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ( $\mathrm{N}=478$ )	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (N=181) \\ & \hline \end{aligned}$
Were you widowed . . .? ${ }^{4}$ Yes	2.6	3.0	2.9	0.8	2.3	3.1	2.0
Has your husband been seriously ill or had a serious accident . . . ? ${ }^{4}$ Yes	7.0	9.3	6.2	2.3	7.9	6.2	7.2
Have you lost (a/any other) close relative or very close friend through death . . . ? ${ }^{4}$ Yes	46.6	44.9	48.7	46.2	48.7	44.8	47.3
Have you been separated from a child, close friend or relative whom you depend on for help Yes ${ }^{4}$	7.4	7.4	7.1	7.8	5.5	7.3	11.2
Did you lose a pet . . . ? ${ }^{4}$ Yes	6.6	8.7	5.4	3.4	5.2	6.9	8.7
Have you had to give up a hobby or activity that is important to you - Yes ?	19.1	17.4	19.5	23.3	14.6	21.4	22.2
Did anything (else) happen to you, either good or bad . . . that was very important to you? ${ }^{4}$ Yes	19.7	23.3	17.4	15.5	17.3	20.9	21.4
```Number of items with "Yes" response }\mp@subsup{}{}{5 O 1 2 or more```	$\begin{aligned} & 30.7 \\ & 39.7 \\ & 29.5 \end{aligned}$	$\begin{aligned} & 28.7 \\ & 39.6 \\ & 31.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 31.9 \\ & 39.0 \\ & 29.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 33.4 \\ & 42.3 \\ & 24.3 \end{aligned}$	$\begin{aligned} & 33.6 \\ & 38.3 \\ & 28.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.4 \\ & 42.2 \\ & 29.3 \end{aligned}$	$\begin{aligned} & 31.2 \\ & 35.8 \\ & 33.1 \end{aligned}$

(Women's Health and Aging Study, baseline interview, 1992-1995)
' All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
4 The phrase "(with)in the past 12 months" is included in the question.
${ }^{5}$ Categories may not add up to 100% due to rounding.

Table 5.12: Percent Reporting Incontinence ${ }^{1,2}$

Incontinence Status	$(\mathrm{N}=1002)$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \\ \hline \end{gathered}$	$\begin{gathered} \text { Moderate }^{3} \\ (\mathrm{~N}=343) \end{gathered}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	Receives Help $(N=181)$
Do you ever lose control of normal bowel movements so that you soil yourself?							
All the time ${ }^{4}$	0.8	0.8	0.9	0.4	1.0	0.3	1.5
Occasionally	18.1	16.7	18.3	21.5	10.9	20.0	27.6
Colostomy/ileostomy	0.5	0.5	0.5	0.9	0.1	0.7	0.9
In the last year have you had any problem with losing control of your urine . . . ?							
A. When you cough, sneeze, laugh, or lift things Yes	40.4	42.6	40.7	33.0	37.7	42.7	39.3
B. Because you could not get to the toilet quickly enough Yes	50.9	50.7	52.0	48.7	42.6	52.4	64.1
If yes to both A and B	27.3	29.6	25.5	25.8	21.3	29.0	35.4
Any episode of urinary incontinence ${ }^{5}$	64.6	64.8	67.1	57.5	59.5	66.8	69.3
During the past month, how often have you lost control of your urine? ${ }^{6}$							
Several times a day	7.4	5.8	8.3	9.7	5.5	8.4	8.8
Once a day	6.2	5.5	7.4	5.3	6.1	6.1	7.1
Several times a week	9.5	10.3	8.8	9.3	8.0	8.8	14.8
Once a week	7.5	8.5	7.2	5.5	7.4	8.6	4.4
Less than once a week	23.0	23.4	23.4	20.7	21.2	24.5	22.6
No incontinence in past month ${ }^{7}$	45.3	45.2	44.0	49.2	51.8	43.4	37.1
When you lose control of your urine, approximately how much do you lose? ${ }^{6}$							
More than $1 / 4$ cup	7.9	7.4	8.9	6.7	5.0	8.0	13.7
1 teaspoon to $1 / 4$ cup	14.3	13.1	14.9	16.4	13.4	14.2	16.4
Less than or equal to 1 teaspoon	13.6	16.1	11.9	10.7	9.2	16.4	14.7
A few drops	27.8	27.3	30.2	23.0	31.4	27.8	20.4
No incontinence in past year ${ }^{8}$	35.4	34.9	33.1	42.9	41.0	33.4	29.4
Currently catheterized ${ }^{9}$	1.0	1.3	1.0	0.4	0.0	0.2	5.2

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two more domains (see Chapter 1).
${ }^{4}$ Frequency was determined by the response to "Do you have occasional soiling or does it happen all the time?"
${ }^{5}$ Responded "Yes" to (1) at least one of the questions about urinary incontinence above or (2) In the last year have you had any problems with accidentally losing control of your urine or bladder function that is, do you wet yourself?
${ }^{6}$ Categories in this item plus "Currently Catheterized" may not add up to 100% due to rounding.
${ }^{7}$ Responded "Never" to this question or "No" to all three questions about losing control of urine in the past year.
8 "No" to all three questions about losing control of urine in the past year.
${ }^{9}$ Determined by a response of "Catheterized" to the question about losing control of urine in the past year, or to the question "How may times during a typical night do you get up to urinate?"

6

Utilization of Health Services, Insurance Coverage, and Ability to Afford Care

Marcel E. Salive, Judith D. Kasper, Elizabeth A. Skinner, Sam Shapiro

People age 65 years and older use health services more often and with greater intensity than the younger population. Within the older population itself, the highest service use is seen for those with disabilities and poor health (Hahn and Lefkowitz, 1992; Wolinsky et al., 1983). This chapter describes service use among the community-resident participants in the Women's Health and Aging Study (WHAS), all of whom are moderately to severely disabled.

Insurance Coverage and Ability to Afford Care

For younger people, insurance coverage is a major determinant of access to medical care (Aday et al., 1984; Lefkowitz and Monheit, 1991). Among people age 65 years and older, however, 95 to 97 percent have coverage for basic health care provided through the Medicare program. Since Medicare enrollment files were used to generate the WHAS sampling frame, all study participants have Medicare coverage. There is variation, however, in public and private coverage that supplements Medicare. This supplemental coverage is significant since it both reduces out-of-pocket costs and covers services that are not part of the Medicare benefit package.

Some elderly people with incomes below the poverty level who meet means testing requirements may obtain Medicaid coverage. One-fifth of
the older disabled women in the WHAS were covered by Medicaid (Table 6.1) and another 2 percent reported that some other public assistance program helped pay for medical care. National data indicate that from 8 to 12 percent of persons age 65 years and older have Medicaid as well as Medicare coverage (Chulis et al., 1993). Medicaid coverage is two to three times higher, however, among persons who report poor health (26 percent in Chulis et al., 1993). Poor health was more commonly reported among women eligible for the WHAS than among physically able women (see Chapter 1, Table 1.2). Among older disabled women, there is no clear relationship between Medicaid coverage and severity of disability, although there was a slight decline in reported coverage with increasing age.

Two-thirds (67 percent) of WHAS respondents reported that they had private supplemental coverage, in addition to Medicare, that paid for hospital or physician care. The 1987 National Medical Care Expenditure Survey (NMES) and the 1991 Medicare Current Beneficiary Survey (MCBS) found that 75 percent of people age 65 years and older nationwide had private supplemental coverage (Chulis et al., 1993). Among people in poor health, this type of coverage was lower (around 50 percent in the MCBS), in contrast to their higher Medicaid coverage. Among the most severely dis-abled-those women receiving assistance with activities of daily living (ADLs)-53 percent reported having supplemental coverage, a lower percentage than among less severely disabled
women (65 percent of moderately disabled women and 74 percent of those who had difficulty with ADLs but received no help). Supplemental insurance coverage for prescription medicines was much lower, reported by only a little more than one-third of older disabled women. Among women 85 years and older only one-quarter reported having insurance that helped pay for medications.

Three-quarters of the women sampled indicated they never had a problem affording the kind of medical care they (and their husbands) should have. Women in the oldest age group were more likely to say they never had a problem than those in the youngest age group (87 and 72 percent, respectively). Overall 9 percent said they had a problem affording care fairly often or very often. There was no clear relationship, however, between problems affording care and disability level.

Hospital Inpatient and Nursing Home Admissions

One-quarter of these older disabled women reported they had been hospitalized overnight during the past year (Table 6.2). In calendar year 1991, 17.5 percent of all elderly Medicare beneficiaries were hospitalized at least once (Chulis et al., 1993). The average length of hospital stay was 11 days for women in the WHAS population who had been hospitalized. The median was considerably shorter, 6 days, indicating that this sample contained some women who had very long stays. Average length of stay per person ranged from 8 days for moderately disabled women to 16 days for the most severely disabled.

Only 1 percent of these older disabled women had been in a nursing home in the past year, staying on average 3 to 4 weeks (mean, 28 days; median, 21 days). The proportion with a recent nursing home stay ranged from 0.1 percent for the moderately disabled to 3.2 percent for women who received help with ADLs. Many studies have documented a relationship between ADL disability and nursing home use (Branch and Jette,

1982; Murtaugh et al., 1990; Salive et al., 1993). A population of functionally limited women should be expected to have higher rates of nursing home admission over time than a representative cross section of older women. At baseline only commu-nity-resident women were recruited into the WHAS, so the virtual absence of recent nursing home use is not surprising.

Ambulatory and Preventive Medical Care

Nearly 9 out of 10 participants (89 percent) had seen a physician in the 6 months prior to the baseline interview, four times on average (Table 6.3). This figure is consistent with national estimates of physician contact for community-resident women age 65 years and older (Benson and Marano, 1994). Among older disabled women, there was little variation by age or functional status in likelihood of a physician visit, although mean number of visits in 6 months was lower for the oldest women (3.0 compared with 4.2 for women in the two younger groups). Virtually all the study participants indicated they had a regular source of care for illness or health advice (96 percent). This is consistent with national data from the NMES, which reported that 90 percent of those age 65 years and older reported a usual source of medical care (Cornelius et al., 1991).

Slightly over half of these older disabled women reported having a flu shot (influenza vaccination) in the past year, with little variation according to age and disability. Medicare began covering flu shots for elderly beneficiaries effective May 1, 1993, which was during the WHAS enrollment period (November 1992-February 1995). Medicare coverage is likely to substantially increase influenza vaccination rates among older people in the future. In 1991, 41.5 percent of older women reported receiving a flu shot in the previous year and rates have been increasing over time (Centers for Disease Control and Prevention, 1995).

Services From Other Health Care Professionals: Therapists, Mental Health Professionals, and Nurses

The use of health care professionals other than physicians is generally low among older disabled women (Table 6.4). Fewer than 5 percent made use of an occupational therapist, a speech therapist, a hearing therapist, or a mental health professional in the 6 months prior to the baseline interview. Use of physical therapy and visiting nurse or home health services was somewhat more common. Fourteen percent reported physical therapy and 13 percent reported in-home assistance from a visiting nurse, home health aide, or nurse's aide. The most disabled women were much more likely than the less disabled women to use the services of health professionals other than physicians. Over a 6 -month period, they were about twice as likely to receive physical therapy, occupational therapy, speech therapy, or mental health services. Almost 35 percent of women receiving ADL help used the services of a visiting nurse, home health aide, or nurse's aide.

Intensity of service use is reflected in the mean and median number of visits. Among users of physical or occupational therapy, which are rehabilitative services, the mean number of visits in a 6 -month period was high (14 and 15 visits, respectively). The median number of visits for physical therapy was substantially lower, indicating the presence of some very high users of these services. Similarly, although very few women used mental health services, those that did averaged about five visits per person in the previous 6 months. For most of these services, the intensity of use was greatest for the most disabled users.

Summary

As would be expected among older women with functional limitations, the use of health services was relatively high. In most instances, these women used more health services than those of similar age in the general population. The somewhat higher coverage by Medicaid and lower
supplemental private coverage is also consistent with what might be expected in a more disabled population. The urban east coast location of the study population and higher proportion of minority and poorly educated women also may influence patterns of service use and coverage. It is also important to note that these data on service use are based on self-report. For future studies of health care utilization by this cohort of older disabled women, more complete information will be available from Medicare claims files.

References

Aday LA, Fleming GV ${ }^{*}$, Andersen R. (1984). Access to Medical Care in the U.S.: Who Has It, Who Doesn' \%. Pluribus Press and Center for Health Administration Studies, Univ. of Chicago.

Benson V, Marano MA. (1994). Current estimates from the National Health lnterview Survey. Vital Health Stat 10(189).

Branch LG, Jette AM. (1982). A prospective study of long-term care institutionalization among the aged. Am J Public Health 72:1373-1379.

Centers for Disease Control and Prevention. (1995). Influenza and pneumococcal vaccination coverage levels among persons aged ≥ 65 years. MMWR 44:506-515.

Chulis GS, Eppig FJ, Hogan MO, Waldo DR, Arnett RH. (1993). Health insurance and the elderly: Data from MCBS. Heallh Care Financing Rev 14: 163-181.

Cornelius L, Beauregard K, Cohen J. (1991). Usual sources of medical care and their characteristics. National Medical Expenditure Survey Research Findings No. 11. Agency for Health Care Policy and Research. DHHS Pub. No. (PHS) $91-$ 0042. Rockville, MD: Public Health Service.

Hahn B, Lefkowitz D. (1992). Annual expenses and sources of payment for health care services. National Medical Expenditure Survey Research Findings No. 14. Agency for Health Care Policy and Research. DHHS Pub. No. (PHS) 93-0007. Rockville, MD: Public Health Service.

Lefkowitz D, Monheit A. (1991). Health insurance, use of health services, and health care expenditures. National Medical Expenditure Survey Research Findings No. 12. Agency for Health Care Policy and Research. DHHS Pub. No. 92-0017. Rockville, MD: Public Health Service.

Murtaugh CM, Kemper P, Spillman BC. (1990). Risk of nursing home use in later life. Med Care 28:951-962.

Salive ME, Collins KS, Foley DJ, George LK. (1993). Predictors of nursing home admission in a biracial population. Am J Public Health 83:17651767.

Wolinsky FD, Coe RM, Miller DK, Prendergast JM, Creel MJ, Chavez MN. (1983). Health services utilization among the noninstitutionalized elderly. J Health Soc Behav 24:325-337.

Table 6.1: Insurance Coverage and Ability to Pay for Care (Percent) ${ }^{1,2}$

		Age Group					

(Women's Health and Aging Study, baseline interview, 1992-1995)
' All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ Categories may not add up to 100% due to rounding.

Table 6.2: Utilization of Hospital Inpatient and Nursing Home Care ${ }^{1,2}$

Utilization History	Total$(\mathrm{N}=1002)$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help $(\mathrm{N}=478)$	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=181) \end{aligned}$
Have you stayed overnight in a hospital during the past 12 months? Yes (\%) If yes: Median number of days ${ }^{4}$ Mean number of days							
	27.0	25.2	31.4	20.6	23.5	24.8	40.8
	6.0	6.0	8.0	5.0	5.0	6.0	8.0
	11.1	10.2	12.0	10.3	7.7	10.4	16.4
Have you stayed in a nursing home during the past 12 months? Yes (\%) If yes: Median number of days ${ }^{5}$ Mean number of days				1.7			
	21.0	17.5	10.5	30.0	30.0	14.0	3.2 30.0
	28.4	17.7	26.3	41.7	30.0	36.7	22.4

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 2% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }_{5}^{4}$ How many nights did you stay overnight in the hospital during the past 12 months?
${ }^{5}$ Altogether, how many days did you stay in the nursing home (during the past 12 months)?

Table 6.3: Ambulatory and Preventive Medical Care ${ }^{1,2}$

		Age Group					

[^1]Table 6.4: Use of Therapists, Mental Health Professionals, and Nursing Services in the Last Six Months ${ }^{1,2}$

Service Provider	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{array}{r} 85+ \\ (\mathrm{N}=303) \\ \hline \end{array}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (N=181) \end{aligned}$
Physical therapist ${ }^{4}$ Yes (\%) If yes: Median number of visits ${ }^{5}$ Mean number of visits							
	13.9	14.0	14.3	12.6	8.5	13.5	26.3
	6.0	8.0	8.0	5.0	5.5	6.0	8.0
	13.5	15.0	11.9	13.4	12.8	12.0	16.0
Occupational therapist ${ }^{4}$ Yes (\%) If yes: Median number of visits ${ }^{5}$ Mean number of visits	2.1	2.9	1.7	0.4	0.3	1.9	6.1
	13.5	15.0	12.0	43.5	3.0	13.5	16.0
	15.0	15.8	11.2	44.6	3.0	11.7	19.6
```Speech therapist }\mp@subsup{}{}{4 Yes (%) If yes: Median number of visits }\mp@subsup{}{}{5 Mean number of visits```							
	0.9 3.5	1.2 3.0	0.6 2.0	1.0 5.0	0.3 1.0	0.4 3.5	3.7 5.0
	3.5 6.7	3.0 6.6	2.0 2.0	5.0 14.4	1.0	3.5 3.3	5.0 8.8
Hearing therapist ${ }^{4}$   Yes (\%)   If yes: Median number of visits ${ }^{5}$ Mean number of visits	4.2	4.0	4.1	5.4	4.0	3.9	5.7
	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	2.0	1.5	2.9	1.4	3.3	1.3	1.5
In the last 6 months, have you discussed any personal problems with a psychiatrist, a psychologist, or any other mental health professional? Yes (\%)   If yes: Median number of visits ${ }^{6}$ Mean number of visits ${ }^{6}$							
	3.7	5.2	2.7	2.1	2.6	3.7	6.0
	4.0	4.0	3.0	3.0	3.0	4.0	4.0
	4.6	5.1	3.6	4.1	5.4	4.4	4.1
Visiting nurse, home health aide, or nurse's aide ${ }^{7}$							
Yes (\%)	12.7	8.8	16.0	15.5	6.9	9.2	34.6
If yes: Median number of visits ${ }^{8}$	15.0	13.0	18.0	15.0	12.0	11.0	24.0
Mean number of visits	33.1	34.5	27.3	47.4	19.3	17.0	51.0

(Women's Health and Aging Study, baseline interview, 1992-1995)

[^2]
# Instrumental and Emotional Support 

Judith D. Kasper, Caroline L. Phillips, Eleanor M. Simonsick, Pearl S. German

The nature and extent of social relationships can have a significant influence on health and wellbeing (Cohen and Syme, 1985; House et al., 1988). Supportive relationships contribute to improved health outcomes, and inadequate social support has been identified as a major risk factor for premature mortality (Berkman and Syme, 1979; House et al., 1982). Social relationships provide both instrumental and emotional support. For community-resident older women with functional limitations and disability, the presence and availability of assistance from both informal and formal care providers have important implications for their continued maintenance in the community. Adequacy of emotional support is also meaningful as it can affect life quality and influence mental health (Berkman and Syme, 1979; Cohen and Syme, 1985).

The Women's Health and Aging Study (WHAS) obtained information on various aspects of social relationships. This chapter focuses on instrumental and emotional support according to age group and disability level. Instrumental support encompasses the presence and source of assistance with a variety of tasks: basic self-care activities of daily living (ADLs) including bathing, dressing, getting in and out of bed or chairs, eating, and using the toilet; and instrumental activities of daily living (IADLs) such as meal preparation, housework, shopping, using the telephone, taking medications, and managing money. Emotional support comprises the presence of a confidant and the confidant's relationship to the participant, as well as perceived adequacy of emotional support.

## Helping Relationships and Assistance With Routine Activities

Table 7.1 describes the number and characteristics of persons who provided help with ADLs and/or IADLs. About 15 percent of older disabled women reported receiving no assistance from others in either self-care or other routine activities. Forty percent identified one helper, and the remaining 46 percent named two or more. The likelihood of receiving help and the number of helpers varied by age. Women age 85 years and older had the highest percentage of multiple helpers. More than 60 percent of women in this age group had two or more helpers, and 10 percent reported four or more. Women receiving help with at least one ADL were more likely to have multiple helpers than less severely disabled women. Close to onequarter had three helpers, and another 17 percent had four or more. Sizable percentages of women with moderate disability ( 80 percent) and those with ADL difficulty who did not receive ADL help (85 percent) received assistance with tasks other than ADLs that are important for community living. Of these women, those with ADL difficulty were more likely to have multiple helpers than the moderately disabled.

Typically, family and friends are the primary providers of assistance with ADLs and other routine activities of daily living (Cantor, 1980; Doty, 1986; Jette et al., 1992; Stone et al., 1987). In this population of functionally limited to severely disabled older women, 22 percent reported receiv-
ing help from their spouse, close to 40 percent from a daughter or daughter-in-law, and 22 percent from a son or son-in-law. A substantial percentage ( 29 percent) also reported receiving assistance from some other relative, including siblings. In contrast to younger women, those age 85 years and older were much less likely to receive assistance from a spouse (less than 5 percent), although mention of help from relatives other than a spouse remained fairly consistent across age groups. Daughters and daughters-in-law played relatively prominent roles in providing help. Their role increased in importance with increasing severity of participant disability: 36 percent of the moderately disabled reported help from daughters and/or daughters-in-law compared with almost 50 percent of those receiving ADL help.

Paid helpers were used by nearly 40 percent of these women, although they were rarely the sole source of assistance. The percentage of women receiving help from paid providers only was 15 percent. The proportion using paid assistance rose with increasing age, with 25 percent of the youngest women having any paid helpers and 57 percent of the oldest women using paid help solely or in addition to unpaid assistance. The proportion using paid help also increased with increasing severity of disability. About one-third of moderately disabled women had paid assistance, whereas over half of women receiving ADL help had at least one paid helper. Sole use of paid help, however, was lower among the oldest women than those age 75 to 84 years, and among the most severely disabled women in contrast to the less disabled women. This suggests that paid help is used to supplement unpaid assistance in the more disabled subgroups.

While older disabled women often reside with their care providers, many do not, even among those who require assistance with ADLs. Overall about 30 percent of the women received all their help from persons who lived with them. The percentage was highest for women age 65 to 74 years, many of whom had only one or two helpers, often a spouse or another member of the immediate family. The oldest women were least likely to live with any of their helpers ( 64 percent), which is
consistent with the high percentage of women in this age group who lived alone (see Chapter 5, Table 5.1). This residence status may also contribute to their considerable use of paid help. In contrast, a substantial majority of women who received help with ADLs lived with at least one of their helpers ( 68 percent), yet nearly one-third lived independent from any helper. Over one-third of the most severely disabled had some helpers who lived with them and some who did not; this is consistent with their reliance on a combination of paid and unpaid help.

Women with ADL difficulty who reported receiving help were asked to identify a primary caregiver. When more than one person helped with ADLs, the recipient was asked who they "relied on the most for help." Table 7.2 presents the characteristics of these caregivers. About 22 percent of these women named their spouse as their primary helper. Since 29 percent of women receiving ADL help were married (see Chapter 2, Table 2.1), it appears that most married women in the most disabled group relied on their spouse as their primary caregiver.

Over one-quarter of women receiving ADL help named a daughter or daughter-in-law as their primary helper. The major role of daughters and daughters-in-law in providing assistance with long-term care needs of older people has been documented previously (Stone et al., 1987). Reliance on daughters and/or daughters-in-law increased with the age of the participant, from 27 percent in women age 65 to 74 years to 37 percent of the oldest old, mirroring the decrease in reliance on a spouse. Twenty-two percent of the most disabled women named a nurse or nurse's aide as their primary caregiver; this proportion rose with increasing participant age, from 17 percent among those age 65 to 74 years to 32 percent among those age 85 years and older. The percentage of primary helpers who were paid was somewhat higher, especially for the oldest women (44 percent). These additional paid helpers could be drawn from both relatives and non-relatives. Given the downward trend in reliance on spouses with increasing participant age, and the increasing importance of daughters and daughters-in-
law, nurses, and nurse's aides, it is not surprising that women predominated as primary caregivers. Women accounted for about two-thirds of the primary caregivers, with the oldest participants most likely to mention a woman in this role ( 86 percent).

Table 7.2 also presents the residential status of the primary caregiver and the activities for which he or she provided help. Among women who received ADL help, those age 65 to 74 years were more likely to live with their primary helper than were the oldest participants, 63 and 40 percent, respectively. This is primarily a function of marital status and reflects the much higher proportion of spouses among primary caregivers for women age 65 to 74 years. Among women age 85 years and older, spouses represented only 1 percent of primary helpers, while nearly 44 percent were paid helpers. Overall, about 80 percent of primary helpers assisted with one or two ADLs, and the remaining 18 percent assisted with three to five ADLs. This distribution varied somewhat by age, with 15 percent of helpers assisting with three to five ADLs for women age 65 to 74 years and 25 percent for women age 85 years and older. Eightyseven percent of the primary ADL care providers also assisted with at least one IADL.

Providing assistance to persons with functional limitations can encompass a broad range of activities. Table 7.3 gives the percentage who received personal assistance for each of five ADLs and seven IADLs. For each task, participants were asked if they received any help whether or not they reported difficulty with the task (see Chapter 4). Among the ADLs, help was most often provided with bathing, followed by dressing. This same hierarchy has been observed in representative national samples of older persons (Prohaska et al., 1993). For the IADLs, over 70 percent of women received help with heavy housework, more than half with shopping for personal items, more than one-third with both light housework and money management, and more than one-fifth with meal preparation. The percentage of women receiving assistance across tasks increased with age and severity of disability for nearly all tasks.

Variation by age in the percentage who received assistance was less dramatic for the ADLs, particularly getting in and out of bed or chairs, eating, and using the toilet, all of which had low overall prevalence of help received. Substantial percentages of women age 85 years and older and even higher percentages of those receiving ADL help received assistance across all tasks.

## Emotional Support

Emotional support, typically operationalized as the presence of one or more persons with whom thoughts and feelings can be shared, has been identified as an important determinant of general health and well-being (Cohen and Syme, 1985). Table 7.4 presents data on the presence and type of confidant. Over 90 percent of these disabled older women reported having a person with whom they could share feelings or on whom they could depend. A child, other relatives, friends, or neighbors were most frequently mentioned. Although 24 percent of these women were married (see Chapter 2, Table 2.1), only 5 percent identified a spouse as their confidant. This may indicate that most of the married women interpreted this question to mean someone other than a spouse or, as at least one other study has found, spouses were not the first choice of confidant among older women (Connidis and Davies, 1992). Although most women indicated they had someone to confide in, almost one-third reported they could have used more emotional support in the previous year. This percentage was higher ( 36 percent) among those age 65 to 74 years than among those age 85 years and older ( 25 percent). Over 45 percent of the most severely disabled women reported they could have used more emotional support, compared with less than 30 percent of less severely disabled women. Women who felt they needed more emotional support were about equally divided in terms of whether they needed a lot, some, or a little more support, except for those age 85 years and older, who rarely reported that they needed a lot more support.

## Summary

Support from family and friends and assistance in daily activities are vitally important influences on the lives of older disabled women in areas ranging from functional status to life satisfaction. In this chapter, the nature of caregivers and the tasks for which they provided help, including both instrumental and emotional support, were examined. Characteristics of people providing assistance in basic daily tasks varied with the age of the WHAS participant: the younger women were more likely to rely on spouses than the older women, who were more likely to rely on their daughters and/or daughters-in-law. Older and more profoundly disabled women tended to have a larger network of helpers which often included paid providers. Additional information on caregiving relationships is being collected in a separate study of caregivers to the WHAS population under a grant supported by The Commonwealth Fund.

## References

Berkman LF, Syme SL. (1979). Social networks, host resistance, and mortality: A nine-year followup study of Alameda County residents. Am J Epidemiol 109: 186-204.

Cantor M. (1980) The informal support system: Its relevance in the lives of the elderly. In: Borgotta E, McClusky N, eds. Aging and Society. Beverly Hills, CA: Sage.

Cohen S, Syme SL. (1985). Issues in the application and study of social support. In: Cohen S, Syme SL, eds. Social Support and Health. Orlando, FL: Academic Press, pp. 3-22.

Connidis IA, Davies L. (1992). Confidants and companions: Choices in later life. J Gerontol Soc Sci 47:S115-S122.

Doty P. (1986). Family care of the elderly. The role of public policy. Milbank Mem Fund Q 64:35-75.

House JS, Landis KR, Umberson D. (1988). Social relationships and health. Science 241:540-545.

House JS, Robbins C, Metzner HM. (1982). The association of social relationships and activities with mortality: Prospective evidence from the Tecumseh Community Health Study. Am J Epide. miol 116:123-140.

Jette AM, Tennstedt Sl, Branch LG. (1992). Stability of informal long.term care. J Aging Health 4(2):193-211.

Prohaska T, Mermelstein R, Miller B, Jack S. (1993). Functional status and living arrangements. In: Van Nostrand JF, Furner SE, Suzman R, eds. Health Data on Older Americans: United States, 1992. Vital Health Stat 3(27):23-39.

Stone R, Cafferata G, Sangl J. (1987). Caregivers of the frail elderly: A national profile. Gerontologist 27:616-626.

Table 7.1: Receipt of Instrumental Support: Number, Relationship, Compensation, and Resident Status of Helpers (Percent) ${ }^{1,2}$

Characteristics of Helpers	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \\ \hline \end{gathered}$	Moderate ${ }^{3}$$(N=343)$	ADL Difficulty	
						Receives No Help $(\mathrm{N}=478)$	Receives Help $(N=181)$
Number ${ }^{4.5}$							
None	14.6	17.0	15.5	5.1	20.9	15.4	0.0
1	39.9	41.0	41.1	33.4	41.8	42.6	28.5
2	25.9	24.0	24.7	34.5	24.9	24.8	30.8
3	13.1	10.9	14.0	17.1	7.0	13.4	24.1
4 or more	6.6	7.1	4.8	10.0	5.5	3.9	16.6
Relationship to participant ${ }^{6}$							
Spouse	22.3	33.0	18.3	4.6	25.2	18.3	26.9
Daughter/daughter-in-law	38.0	41.8	34.5	36.5	36.4	34.1	49.6
Son/son-in-law	22.1	22.4	21.5	23.0	15.9	26.1	23.2
Sibling	6.9	6.8	6.1	9.3	6.0	7.6	6.9
Other relative	22.3	23.3	19.4	26.6	24.8	17.8	28.6
Paid non-relative	32.4	19.0	38.2	52.7	27.4	31.9	41.7
Unpaid non-relative	12.7	10.9	12.7	17.1	8.8	13.5	17.1
Remuneration status ${ }^{5}$							
All paid	15.1	10.8	19.6	15.0	17.0	16.8	8.0
All unpaid	61.3	74.8	54.6	43.0	67.7	62.9	47.1
Paid and unpaid	23.6	14.4	25.8	42.0	15.3	20.4	44.9
Residence status ${ }^{5}$							
All live with participant	30.3	39.5	26.3	16.1	37.9	24.2	31.9
None live with participant	48.8	36.6	55.6	64.0	45.0	58.9	31.5
Both arrangements	20.9	24.0	18.1	20.0	17.1	16.9	36.6

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than $1 \%$ missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ The participants were asked to name up to three (or four for meal preparation) helpers for the following activities: bathing or showering, dressing, getting in or out of bed or chairs, eating, using the toilet including getting to the toilet, preparing meals, doing heavy housework, doing light housework, shopping for personal items such as medicines or toilet items, using the telephone, taking medications, and managing money.
${ }^{5}$ Categories may not add up to $100 \%$ due to rounding.
${ }^{6}$ Percent of participants having at least one helper in these categories.

Table 7.2: Characteristics of the Primary Helper for Women with ADL Difficulty Who Receive Help (Percent) ${ }^{1,2,3}$

Characteristics of Helpers	Total$(N=181)$	Age Group		
		$\begin{gathered} 65.74 \\ (\mathrm{~N}=58) \\ \hline \end{gathered}$	$\begin{array}{r} 75.84 \\ (N=57) \\ \hline \end{array}$	$\begin{gathered} 85+ \\ (N=66) \\ \hline \end{gathered}$
Relationship to participant ${ }^{4.5}$				
Spouse	22.2	33.1	22.1	1.0
Daughter/daughter-in-law	28.0	26.7	24.9	37.2
Son/son-in-law	4.1	6.9	1.8	3.9
Sibling	3.8	3.3	4.9	2.6
Other relative	6.8	5.2	6.8	10.0
Friend/neighbor	8.1	6.3	12.8	1.6
Nurse/aide	22.7	17.2	23.4	31.9
Other/non-relative	4.3	1.4	3.4	11.8
Gender ${ }^{8}$				
Male	26.3	40.0	23.9	4.9
Female	62.9	52.4	61.7	86.0
Not ascertainable	10.8	7.7	14.4	9.1
Residence ${ }^{7}$				
Lives with participant	56.3	62.9	58.0	40.1
Number of ADL tasks in which helper provides assistance ${ }^{8}$				
1	52.1	55.6	49.6	50.8
2	30.0	29.3	33.3	24.6
3	8.5	3.7	9.1	16.8
4	6.9	8.5	6.7	4.6
5	2.4	2.9	1.5	3.2
Assists with a least one IADL task ${ }^{9}$	87.2	86.9	85.3	91.8
Paid for help ${ }^{10}$	32.1	22.4	35.6	43.9

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ These variables have less than $1 \%$ missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ In the last year, who have you relied on the most for help with the activities I've mentioned?
${ }^{4}$ What is [person's] relationship to you?
${ }^{5}$ Categories may not add up to $100 \%$ due to rounding.
${ }^{6}$ Gender of caregivers was not asked directly. Primary helpers whose relationship to the participant is "nurse/aide" or "houseworker/maid" are assumed to be female. Gender is unascertainable for primary helpers whose relationship to the participant is "partner/roommate", "friend/neighbor", or "other non-relative."
7 Does [person] live with you or not?
${ }^{8}$ Out of a possible 5 tasks: bathing or showering, dressing, getting in or out of bed or chairs, eating, and using the toilet including getting to the toilet.
${ }^{9}$ IADL tasks include preparing meals, doing heavy housework, doing light housework, shopping for personal items, using the telephone, taking medications, and managing money.
${ }^{10}$ Is [person] paid to help you or not?

Table 7.3: Tasks for Which Help Received (Percent) ${ }^{1,2}$

Task	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ( $\mathrm{N}=478$ )	Receives Help ( $\mathrm{N}=181$ )
Bathing or showering ${ }^{4,5}$	16.3	13.3	17.0	23.3	2.5	2.0	84.6
Dressing ${ }^{4,5}$	11.2	10.6	10.9	13.7	2.8	1.5	55.5
Getting in and out of bed or chairs ${ }^{4,5}$	4.2	3.2	4.7	6.0	0.1	0.3	23.7
Eating ${ }^{4,5}$	1.7	2.2	0.9	2.3	0.1	0.0	9.6
Using the toilet including getting to the toilet ${ }^{4,5}$	3.0	3.0	3.0	3.3	0.5	0.0	16.8
Meal preparation ${ }^{6}$	21.0	17.3	19.9	34.3	8.7	15.6	61.3
Doing heavy housework such as washing windows, walls, or floors ${ }^{4}$	71.1	68.2	69.8	82.6	63.1	68.9	93.6
Doing light housework such as doing dishes, straightening up, or light cleaning ${ }^{4}$	34.0	31.1	34.0	42.4	21.2	27.6	78.1
Shopping for personal items such as medicines or toilet items ${ }^{4}$	53.7	44.7	54.7	77.3	43.5	48.1	90.2
Using the telephone ${ }^{4}$	5.4	4.6	4.4	10.2	1.9	3.1	18.7
Taking your medications ${ }^{4}$	7.1	4.8	7.9	11.9	3.3	2.5	27.7
Managing your money ${ }^{7}$	36.7	31.2	38.5	48.2	29.8	33.8	59.3

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than $1 \%$ missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ The question is in the form "Do you usually receive help from another person in . . . ?" and was asked of all participants.
${ }^{5}$ For each task, participants were asked if they received any help whether or not they reported difficulty with the task. In order to be classified as having ADL difficulty, receives help, a participant had to report both difficulty and receipt of help for the same ADL (at least one). Thus a small percentage of women who were not classified as receiving ADL help reported receiving help with some ADL tasks.
${ }^{6}$ Who has the main responsibility for preparing meals in your home? Does (a/any other) friend or relative come in to your home to help you prepare meals or bring you meals on a regular basis?
${ }^{7}$ Does another person usually help you with managing your money?

Table 7.4: Emotional Support: Presence and Type of Confidant and Perceived Adequacy of Support (Percent) ${ }^{1,2}$

Indicator of Emotional Support	Total$(N=1002)$	Age Group			Disability Level		
		$\begin{gathered} 65.74 \\ (N=388) \end{gathered}$	$\begin{gathered} 75.84 \\ (N=311) \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{3} \\ & (N=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ( $\mathrm{N}=478$ )	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=181) \end{aligned}$
Is there any one special person you know that you feel very close and intimate with-someone you share confidences and feelings with, someone you feel you can depend on? ${ }^{4}$							
No	9.0	7.9	9.4	113	5.7	11.5	8.9
Yes	91.0	92.1	90.6	88.7	94.3	88.5	91.1
Who is this person? ${ }^{5}$							
Spouse	5.0	7.0	4.2	1.1	4.2	4.7	7.2
Child	28.9	29.8	27.4	30.3	27.9	28.6	32.0
Other relative	24.3	21.3	27.0	25.9	28.7	20.8	25.1
Friend/neighbor	30.8	32.7	29.6	28.2	32.3	32.1	23.8
Other	2.0	1.3	2.5	3.2	1.2	2.4	2.9
Could you have used more emotional support than you received in the last year? ${ }^{4}$							
No	68.1	63.7	70.1	75.4	73.2	69.0	54.6
Yes ${ }^{5}$	32.0	36.3	29.9	24.6	26.8	31.0	45.4
Would you say you needed . . .? ${ }^{5}$ A lot more	8.7	9.2	10.1	3.7	8.0	7.4	14.1
Some more	10.9	11.5	9.8	12.0	8.2	11.5	14.9
A little more	12.3	15.7	10.0	8.9	10.6	12.2	16.5

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than $1 \%$ missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1 ).
${ }^{4}$ Categories may not add up to $100 \%$ due to rounding.
${ }^{5}$ Categories may not add up to percent "Yes" above due to rounding.

## 8

# Mental Health and General Well-Being 

Judith D. Kasper, Eleanor M. Simonsick

Mental health is increasingly recognized as an important component of overall health status. One of the most widely used health status assessment instruments, the Short-Form 36 (Ware and Sherbourne, 1992), contains both physical and mental health scales in recognition of the key role of emotional health in overall well-being. Quality of life, while conceptually related to mental health, addresses broader issues of life circumstances and individuals' feelings about various aspects of their lives (McDowell and Newell, 1987). The inclusion of life quality as a health and medical outcome is increasingly common, in part as a result of the increased emphasis on patient and consumer perspectives on health and health care.

The Women's Health and Aging Study (WHAS) examines selected aspects of mental health and general well-being. These include depressive symptoms as measured by the Geriatric Depression Scale (GDS; Yesavage et al., 1983), life quality assessed with the Perceived Quality of Life Scale (PQOL; Patrick et al., 1988), anxiety, and personal mastery. All indicators were administered in the baseline interview and repeated every 6 months over the 3 -year followup.

## Depressive Symptoms

Depressive symptomatology is common, affecting 12 percent to 20 percent of elderly people residing in the community (Comstock and Helsing, 1976; Eaton and Kessler, 1981; Frerichs et al., 1981; Murrell et al., 1983); the very old have higher rates (Blazer et al., 1991; Gatz and Hur-
wicz, 1990). There is substantial evidence that depressive symptomatology is associated with poorer physical, social, and role functioning than physical illness alone (Wells et al., 1989). Depression is associated with increased risk of cardiovascular events (Booth-Kewley and Friedman, 1987; Carney et al., 1990) and has been found to predict poorer recovery from myocardial infarction (Stern et al., 1976, 1977), stroke (Feibel and Springer, 1982), hip fracture (Magaziner et al., 1990), and disability (Gurland et al., 1988). While depressive symptoms are typically considered indicative of poor health and physical decline (Cohen-Cole and Stoudemire, 1987; Rodin and Voshart, 1986), some studies suggest that depressive symptomatology and related psychosocial factors may precipitate decline (Aneshensel et al., 1984; Gurland et al., 1988).

Prevalence of depressive symptomatology can vary with the assessment approach (Newmann, 1989). Clinical diagnostic criteria may underestimate depression among elderly people, in contrast to symptom scales, which generally yield higher prevalence estimates (Gallo et al., 1994). In the WHAS, the GDS was selected to measure depressive symptoms because it is less complicated and more sensitive than other commonly used scales and has high sensitivity and specificity for identifying depression diagnosed according to both Research Diagnostic Criteria (Spitzer et al., 1978) and DSM-III criteria (American Psychiatric Association, 1980; Norris et al., 1987). In addition, it has been found to be a valid measure of depressive symptoms in persons with mild to moderate dementia (Feher et al., 1992). Only one item in the
scale is related to somatic symptoms, making it preferable for use with chronically ill and disabled persons like the women participating in the WHAS. The GDS takes 8 to 10 minutes to administer and consists of 30 items that require a yes or no response. Scores can range from 0 to 30, with higher scores indicating more depressive symptomatology. A score of 10 or below indicates no symptoms; scores of 14 or above indicate moderate to high levels of depressive symptomatology (Norris et al., 1987).

Table 8.1 presents the mean GDS score, percentage with at least mild depressive symptomatology, and the percentage with a moderate to high level of depressive symptoms for the total population, and for each age group and disability level. About one-third of these disabled older women exhibited some depressive symptomatology, but substantially fewer-17 percent-had a moderate to high level of symproms. Prevalence of depressive symptoms declined with age. Among women age 65 to 74 years, 19 percent were in the moderate to high range, in contrast to 14 percent of women age 85 years and older. Prevalence of depressive symptoms was similar for women with moderate disability and those who reported difficulty with ADLs but did not receive help. It increased dramatically for the most severely disabled, however. Among moderately disabled women, 27 percent had at least mild symptomatology and 13 percent had a moderate to high level of symptoms. Among the most disabled women, the comparable estimates were 47 percent and 29 percent.

## Quality of Life

The PQOL scale consists of 20 items and measures satisfaction with a broad range of life domains, including physical, psychological, and social. It incorporates areas of dysfunction included in the Sickness Impact Profile, a widely used and researched instrument (Bergner et al., 1981), and validation studies are ongoing (Danis et al., 1988; Norburn et al., 1987). For 19 of the items respondents indicate their level of satisfac-
tion on a scale ranging from 0 (extremely dissatisfied) to 10 (extremely satisfied). For 1 item, respondents indicate their level of happiness from 0 (extremely unhappy) to 10 (extremely happy). The scale may be used as a simple summary of scores across the individual items or as a mean score of the items. Three subscales, which the developers have identified as measures of physical, social, and cognitive health (Patrick et al., 1988), may also be created. The items comprising these subscales are indicated in the footnotes to Table 8.3 .

To simplify presentation of the data and to provide the distribution of both low and high levels of satisfaction, the 11 -point scale was categorized as follows: dissatisfied (0-3), neutral (4-6), and satisfied ( $7-10$ ). Table 8.2 presents the percentage dissatisfied, neutral, and satisfied for each item for the total population and by age group and disability level. Table 8.3 provides mean full scale and subscale scores and the percentage scoring in the low, medium, and high range of the scales.

Among these older disabled women, the highest rates of dissatisfaction were observed for amount of walking, physical health, and frequency of getting outside the house (Table 8.2). All of these items are related to health and functional status. Consistent with this trend, only 50 percent fell in the high satisfaction range of the physical health subscale, compared with over 75 percent for the cognitive and social health subscales (Table 8.3). Just under one-fifth of the WHAS population was dissatisfied with the way their income meets their needs. Between 10 and 15 percent reported dissatisfaction with ability to care for themselves, contributions to their community, their retirement, their recreation or leisure activities, their level of sexual activity, the amount of variety in their lives, and sleep habits. The percentage of women in the dissatisfied range on other items was 10 percent or less. On the global question concerning happiness, three-quarters of these women fell into the happy to rery happy range.

Level of satisfaction varied by age on some individual items in the PQOL. For example, higher percentages of the oldest women, compared with the others, were satisfied with their physical health and amount of walking. A higher percentage of the youngest women, on the other hand, were dissatisfied with how well they care for themselves, and neutral or dissatisfied with the way their income meets their needs. On the subscales, age differences were small. Only on the cognitive health subscale did the percentage highly satisfied decline with age.

On almost every individual item there was a gradient from dissatisfied to satisfied by disability level, with moderately disabled women expressing the most satisfaction and severely disabled women the least. Among those receiving help with ADLs, 32 percent were dissatisfied with their physical health, 30 percent with how well they care for themselves, 36 percent with how often they get outside their home, and 27 percent with their contribution to the community. Comparable percentages for moderately disabled women ranged from a high of 18 percent to a low of 5 percent. The overall scale and the physical health and social health subscales also indicate a decrease in the percentage of women in the satisfied range with increasing disability. The cognitive health subscale showed only a slight trend by disability level, however.

## Anxiety

Fear and anxiety may have a significant effect on functional status and disability. Fear of unfamiliar places and anxiety over leaving the home, for example, can have important implications for a host of practices known to affect function, such as engaging in physical activity and maintaining social interaction. One specific fear, related to falling, has been found to contribute to limitations in physical functioning (Tinetti et al., 1994) (see Chapter 13).

Only a few brief measures of anxiety are appropriate for use in population-based surveys of community-dwelling elderly. Four of the seven
items in the anxiety subscale of the Hopkins Symptom Checklist (HSCL; Derogatis et al., 1974) were used to measure symptoms of anxiety in the WHAS. The HSCL and its subscales are widely used and well studied. The four anxiety items selected were chosen on the basis of their face validity. The three that were excluded are largely somatic. Respondents were asked, in the past week, how frequently (not at all, a little, quite a bit, and extremely) they felt nervous or shaky inside; had to avoid certain things, places, or activities because they frightened them; felt tense or keyed up; or felt fearful.

Table 8.4 presents the percentage distribution of responses to each of the anxiety symptoms for the total population and for the age and disability subgroups. The percentage with none, one, or two or more symptoms is also provided. Women expressing considerable anxiety (quite a bit or extreme frequency of symptoms in the past week) represented a small percentage of the overall population, ranging from a little over 10 percent who felt nervous or shaky inside or tense or keyed up, to 5 percent who felt fearful and 3 percent who avoided things, places, or activities out of fear. About one-fifth of these women experienced at least one symptom, however, and another fifth reported experiencing two or more symptoms. There were few differences by age on individual items or the percentage experiencing one or more symptoms. The most disabled women were more likely to report at least one symptom, about half compared with 37 percent of moderately disabled women. For the individual symptoms, among women receiving help in ADLs, about one-third reported feeling nervous or shaky inside, or tense or keyed up. About one-quarter of moderately disabled women reported these symptoms.

## Personal Mastery

Sense of personal control over health outcomes has emerged as a potentially important factor in the maintenance of physical function (Rodin, 1986). To minimize respondent burden, only the two items most representative of the personal mastery dimension were selected from Pearlin
and Schooler's (1978) work on the structure of coping. The two items are "I can do just about anything I really set my mind to" and "I often feel helpless in dealing with the problems of life." For each item there are four response options, ranging from strongly agree to strongly disagree.

Table 8.5 lists the response distribution for each of the mastery items. In this population of disabled women, 46 percent agreed strongly that they can do what they set their minds to, and 37 percent disagreed strongly that they feel helpless in dealing with the problems of life. About 10 percent were at the opposite extreme, expressing helplessness. Women age 65 to 74 years were more likely to disagree strongly with feeling helpless in dealing with life than women age 85 years or older, one-third of whom agreed somewhat or strongly. Women with ADL difficulty who received help were more likely to express helplessness than others. Twenty percent agreed strongly that they often feel helpless in dealing with the problems of life, compared with 9 percent of moderately disabled women. Similarly, 16 and 6 percent, respectively, disagreed strongly with the statement that they could do anything they set their minds to.

## Summary

Overall, the prevalence of mental health problems as indicated by depressive symptomatology was low. Quality of life indicators across physical, social, and cognitive domains also suggest high levels of satisfaction. The most severely disabled women exhibit the poorest mental health and lowest levels of satisfaction, particularly in areas related to physical capacity. On the whole, however, this population of community-resident disabled women exhibits relatively good mental health and expresses a high degree of general well-being.

## References

Aneshensel CS, Frerichs RR, Huba GJ. (1984). Depression and physical illness: A multiwave, nonrecursive causal model. J Health Soc Behav 25:350-371.

Bergner M, Bobbit RA. Carter WB, Gilson BS. (1981). The Sickness Impact Profile: Development and final review of a health status measure. Med Care 19:787-805.

Blazer D, Burchett B, Service C, George LK. (1991). The association of age and depression among the elderly: An epidemiologic exploration. .J Gerontol Soc Sci 46:S2 10-S215.

Booth-Kewley S, Friedman HS. (1987). Psychological predictors of heart disease: A quantitative review. Psychol Bull 101:343-362.

Carney RM, Freedland KE, Jaffe AS. (1990). Insomnia and depression prior to myocardial infarction. Psychosom Med 52:603-609.

Cohen-Cole SA. Stoudemire A. (1987). Major depression and physical illness: Special considerations in diagnosis and biologic treatment. Psychiatr Clin North Am 10:1-17.

Comstock GW, Helsing KJ. (1976). Symptoms of depression in two communities. Psychol Med 6:551-563.

Danis M, Patrick DL, Southerland Ll, Green M. (1988). Patients' and families' preferences for medical intensive care. JAMA 260:797-802.

Derogatis LR, Lipman RS, Rickels K, Uhlenhuth EH, Covi L. (1974). The Hopkins Symptom Checklist (HSCL): A self-report symptom inventory. Behav Sci 19:1-15.

Eaton WW, Kessler LG. (1981). Rates of symptoms of depression in a national sample. Am J Epidemiol 114:528-538.

Feher EP, Larrabee GJ, Crook TH. (1992). Factors attenuating the validity of the geriatric depression scale in a dementia population. $J$ Am Geriatr Soc 40:906-909.

Feibel JH, Springer CJ. (1982). Depression and failure to resume social activities after stroke. Arch Phys Med Rehabil 63:276-278.

Frerichs RR, Aneshensel CS, Clark VA. (1981). Prevalence of depression in Los Angeles County. Am J Epidemiol 113:691-699.

Gallo JJ, Anthony AC, Muthen BO. (1994). Age differences in the symptoms of depression: A latent trait analysis. J Gerontol Psychol Sci 49: P251-P264.

Gatz M, Hurwicz M-L. (1990). Are old people depressed? Cross-sectional data on center for epidemiological studies depression scale factors. Psychol Aging 5:284-290.

Gurland BJ, Wilder DE, Berkman C. (1988). Depression and disability in the elderly: Reciprocal relations and changes with age. Int $J$ Geriatr Psychiatry 3:163-179.

Magaziner J, Simonsick EM, Kashner TM, Hebel R, Kenzora, JE. (1990). Predictors of functional recovery one year following hospital discharge for hip fracture: A prospective study. J Gerontol Med Sci 45:M101-M107.

McDowell I, Newell C. (1987). Measuring Health: A Guide to Rating Scales and Questionnaires. New York: Oxford University Press.

Murrell SA, Himmelfarb S, Wright K. (1983). Prevalence of depression and its correlates in older adults. Am J Epidemiol 117:173-185.

Newmann JP. (1989). Aging and depression. Psychol Aging 4:150-165.

Norburn J, Patrick DL, Beresford SA, Stein J. (1987). Functional status and perceived quality of life among older persons. Proceedings of the 21st Public Health Conference on Records and Statistics July 13-15, 1987. Washington DC: National Center for Health Statistics.

Norris JT, Gallagher D, Wilson A, Winograd CH. (1987). Assessment of depression in geriatric medical outpatients: The validity of two screening measures. J Am Geriatr Soc 35:989-995.

Patrick DL, Danis M, Southerland LI, Hong G. (1988). Quality of life following intensive care. J Int Med 3:218-23.

Pearlin LI, Schooler C. (1978). The structure of coping. J Health Soc Behav 18:2-21.

Rodin G, Voshart K. (1986). Depression in the medically ill: An overview. Am J Psychiatry 143:696-705.

Rodin J. (1986). Aging and Health: Effects of the sense of control. Science 233:1271-1276.

Spitzer RL, Endicott J, Robins E. (1978). Research diagnostic criteria: Rationale and reliability. Arch Gen Psychiatry 35:773-782.

Stern MJ, Pascale L, Ackerman A. (1977). Life adjustment postmyocardial infarction. Arch Intern Med 137:1680-1685.

Stern MJ, Pascale L, McLoone JB. (1976). Psychosocial adaptation following an acute myocardial infarction. J Chron Dis 29:513-526.

Tinetti ME, De Leon CM, Doucette JT, Baker DI. (1994). Fear of falling and fall-related efficacy in relationship to functioning in community-resident elders. J Gerontol Med Sci 49:M140-M147.

Ware JE, Sherbourne CD. (1992). The MOS 36Item Short-Form Health Survey (SF-36). Med Care 30:473-483.

Wells KB, Stewart A, Hays RD, Burnam A, Rogers W, Daniels M, Berry S, et al. (1989). The functioning and well-being of depressed patients: Results from the Medical Outcomes Study. JAMA 262:914-919.

Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, Leirer VO. (1983). Development and validation of a geriatric depression screening scale: A preliminary report. J Psychiatr Res 17: 37-49.

Table 8.1: Depressive Symptomatology: Geriatric Depression Scale Scores ${ }^{1,2,3}$

Geriatric Depression Scale	$\begin{gathered} \text { Total } \\ (N=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65.74 \\ (N=388) \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \end{gathered}$	Moderate ${ }^{4}$$(N-343)$	ADL Difficulty	
						Receives No Help ( $\mathrm{N}=478$ )	Recelves Help $(N=181)$
Mean	8.0	8.1	7.9	7.9	7.1	8.0	9.9
Mild to high level of depressive symptomatology ( $\geq 10$ ) (\%)	31.8	34.7	29.5	29.4	27.2	29.8	46.8
Moderate to high level of depressive symptomatology ( 214 ) (\%)	17.4	18.6	17.3	143	13.1	16.4	29.3

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than $1 \%$ missing data. Results are based on non-missing data.
${ }^{2}$ Percents and means are based on weighted data.
${ }^{3}$ The Geriatric Depression Scale (GDS) consists of 30 items with a yes no response format. Scores can range from 0 to 30 , with high scores indicative of more depressive symptomatology Yesavage JA, Brink TL, Rose TL, et al (1983). Development and validation of a gerratric depression screening scale: A preliminary report. J Psychiatr Res 17:37-49.
${ }^{4}$ No ADL difficulty; disabled in two or more domains (see Chapter 1 ).

Table 8.2: Perceived Quality of Life: Level of Satisfaction for Scale Items (Percent) ${ }^{1,2,3}$

Level of Satisfaction ${ }^{4}$	Total$(N=1002)$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \end{gathered}$	Moderate ${ }^{5}$$(\mathrm{N}=343)$	ADL Difficulty	
						Receives No Help ( $\mathrm{N}=478$ )	Receives Help $(N=181)$
How satisfied are you with . . . ?   1) Your physical health, that is, the health of your body   Dissatisfied (0-3)   Neutral (4-6)   Satisfied (7-10)							
	23.8	25.2	24.2	18.8	17.7	25.7	31.5
	31.8	33.6	32.3	24.8	31.0	32.2	32.1
	44.4	41.2	43.5	56.4	51.4	42.1	36.4
2) How well you care for yourself, for example, preparing meals, bathing or shopping Dissatisfied (0-3)   Neutral (4-6)   Satisfied (7-10)							
	12.0	10.1	12.9	15.1	5.2	10.7	29.5
	17.6	17.3	15.8	23.5	11.9	18.8	26.3
	70.4	72.6	71.3	61.4	83.0	70.5	44.2
3) How well you think and remember Dissatisfied (0-3) Neutral (4-6)							
	9.0	8.7	9.1	9.6	8.4	8.2	12.7
	27.6	25.5	30.2	26.5	26.7	27.8	28.6
	63.4	65.8	60.7	64.0	64.8	64.0	58.8
4) The amount of walking you do   Dissatisfied (0-3)   Neutral (4-6)							
	38.6	39.7	39.8	31.6	29.1	40.7	52.1
	31.3	33.1	29.1	32.0	32.4	32.4	26.0
	30.1	27.2	31.0	36.4	38.5	26.9	21.9
5) How often you get outside the house, for example, going into town, using public transportation or driving   Dissatisfied (0-3)   Neutral (4-6)   Satisfied (7-10)							
	22.3	20.1	22.5	28.3	16.1	22.1	35.7
	24.6	25.6	24.9	20.9	23.4	23.6	29.8
	53.1	54.3	52.7	50.8	60.5	54.3	34.5
6) How well you carry on a conversation, for example, speaking clearly, hearing others, or being understood   Dissatisfied (0-3)   Neutral (4-6)   Satisfied (7-10)							
	6.4	5.0	6.9	9.0	3.7	6.9	10.6
	17.2	13.9	19.8	19.8	14.8	18.3	18.8
	76.5	81.1	73.3	71.2	81.5	74.8	70.7
7) The kind and amount of food you eat   Dissatisfied (0-3)   Neutral (4-6)   Satisfied (7-10)							
	6.5	7.9	5.3	6.0	5.5	6.3	9.3
	17.2	16.3	19.6	13.4	14.7	18.6	18.5
	76.3	75.8	75.2	80.6	79.8	75.1	72.3
8) How often you see or talk to your family and friends   Dissatisfied (0-3)   Neutral (4-6)   Satisfied (7-10)							
	5.9	5.7	6.3	5.8	5.0	6.3	7.0
	16.0	14.8	15.7	20.4	13.4	15.5	22.7
	78.1	79.6	78.0	73.8	81.6	78.3	70.3
9) The help you get from your family and friends, for example, helping in an emergency, fixing your house, or doing errands Dissatisfied (0-3)   Neutral (4-6)   Satisfied (7-10)							
	7.9	6.9	9.1	7.7	5.6	9.1	9.4
	12.1	13.4	9.8	14.1	10.8	11.6	15.8
	80.1	79.7	81.1	78.2	83.6	79.3	74.8
10) The help you give to your family and friends   Dissatisfied (0-3)   Neutral (4-6)   Satisfied (7-10)							
	8.6	5.9	10.5	11.3	2.6	9.9	17.3
	18.3	16.5	19.4	20.7	13.4	19.0	26.5
	73.1	77.6	70.1	68.0	84.0	71.1	56.2


R						

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than $1 \%$ missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Consists of 20 questions on health and fundamental aspects of life. For 19 of the items, respondents indicate level of satisfaction from 0 (extremely dissatisfied) to 10 (very satisfied). For one item, respondents indicate their level of happiness from 0 (extremely unhappy) to 10 (very happy). Patrick DL, Danis M, Southerland LI, Hong G. (1988). Quality of life following intensive care. J Int Med 3:218-23.
${ }_{5}^{4}$ Categories for each item may not add up to $100 \%$ due to rounding.
${ }^{5}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).

Table 8.3: Perceived Quality of Life Scale and Subscale Scores ${ }^{1,2}$

Perceived Quality of Life Scale and Subscales ${ }^{3}$	Total$(N=1002)$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }^{4} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help $(N=478)$	Receives Help $(N=181)$
Perceived quality of life scale ${ }^{5}$   Mean scale score   Distribution of scale score (\%)   Low (0-3)   Medium (4-6)   High (7-10)	7.3	7.3	7.3	7.4	7.6	7.3	6.6
	2.5	2.1	2.7	3.2	0.7	2.9	5.1
	25.2	24.6	25.5	26.3	18.8	25.0	39.2
	72.3	73.3	71.8	70.5	80.5	72.1	55.7
Cognitive health subscale ${ }^{6}$   Mean subscale score   Distribution of subscale score (\%)   Low (0-3)   Medium (4-6)   High (7-10)	7.6	7.7	7.5	7.3	7.7	7.5	7.2
	4.0	4.0	3.6	5.4	2.2	4.3	7.0
	20.3	17.3	21.9	24.7	20.8	19.5	21.5
	75.7	78.8	74.5	69.9	77.1	76.2	71.5
Physical health subscale ${ }^{7}$   Mean subscale score Distribution of subscale score (\%) Low (0-3) Medium (4-6) High (7-10)	6.3	6.3	6.3	6.5	6.9	6.3	5.2
	11.4	10.9	11.6	12.2	5.2	10.6	26.5
	38.9	39.4	39.8	34.6	33.9	40.6	44.2
	49.7	49.6	48.6	53.2	60.9	48.8	29.3
Social health subscale ${ }^{8}$   Mean subscale score Distribution of subscale score (\%) Low (0-3) Medium (4-6) High (7-10)	7.6	7.5	7.6	7.8	7.9	7.6	7.0
	2.4	1.9	3.0	2.2	1.0	2.2	5.6
	21.2	20.9	21.3	21.9	15.8	21.1	32.7
	76.4	77.2	75.8	75.9	83.2	76.7	61.7

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than $1 \%$ missing data. Results are based on non-missing data.
${ }^{2}$ Percents and means are based on weighted data.
${ }^{3}$ Distribution of scores may not add up to $100 \%$ due to rounding.
${ }^{4}$ No ADL difficulty; disabled in two more domains (see Chapter 1).
${ }^{5}$ Scale score is mean of items $1-20$ in Table 8.2.
${ }^{6}$ Subscale score is mean of items 3 and 6 in Table 8.2.
${ }^{7}$ Subscale score is mean of items 1, 2, 4,5, and 19 in Table 8.2.
${ }^{8}$ Subscale score is mean of items 8-18 and 20 in Table 8.2.

Table 8.4: Anxiety Symptoms (Percent) ${ }^{1,2,3}$

Anxiety Symptoms ${ }^{4}$	$\begin{gathered} \text { Total } \\ (N=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \end{gathered}$	Moderate ${ }^{5}$$(N=343)$	ADL Difficulty	
						Receives No Help ( $\mathrm{N}=478$ )	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (N=181) \end{aligned}$
During the past week, have							
Felt nervous or shaky inside							
No	73.1	73.0	73.5	72.1	76.2	73.2	66.3
A little	15.7	17.0	15.0	14.0	13.5	17.0	16.7
Quite a bit	7.6	7.2	7.5	8.9	8.2	5.3	12.3
Extremely	3.6	2.8	4.0	5.1	2.1	4.4	4.7
Had to avoid certain things, places, or activities because they frighten you							
No	95.1	95.5	93.9	97.0	98.5	93.8	91.6
A little	2.3	2.5	2.2	1.5	1.5	1.9	4.9
Quite a bit	2.3	1.4	3.9	0.9	0.0	4.0	2.6
Extremely	0.3	0.5	0.0	0.6	0.0	0.4	0.9
  Felt tense or keyed up							
No	74.4 15.6	70.5 18.6	77.6 13.5	77.3 12.2	76.0 15.3	75.9 15.5	67.1 16.6
Quite a bit	7.7	9.3	6.6	6.1	7.2	6.8	11.3
Extremely	2.3	1.6	2.3	4.4	1.6	1.9	5.1
Felt fearful							
No	89.6	89.5	90.4	87.5	92.7	88.6	85.7
A little	5.8	5.0	6.3	6.8	5.7	5.1	8.1
Quite a bit	3.3	4.2	2.4	3.2	1.7	4.7	2.7
Extremely	1.3	1.3	0.9	2.5	0.0	1.5	3.5
Total symptoms ${ }^{6}$							
None	58.6	57.2	59.3	60.9	62.8	58.2	51.0
1	22.5	22.4	24.2	18.4	21.3	23.9	21.4
2 or more	18.9	20.5	16.5	20.6	15.9	18.0	27.6

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than $1 \%$ missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Items come from the anxiety subscale of the Hopkins Symptom Checklist. Derogatis LR, Lipman RS, Rickels K, Uhlenhuth EH, Covi L. (1974). The Hopkins Symptom Checklist (HSCL): A self-report symptom inventory. Behavioral Science 19:1-15.
${ }^{4}$ Categories for each item may not add up to $100 \%$ due to rounding.
${ }^{5}$ No ADL difficulty; disabled in two or more domains (see Chapter 1 ).
${ }^{6}$ Total number of items for which participant reported experiencing the symptom at least "a little."

Table 8.5: Personal Mastery (Percent) ${ }^{1,2,3}$

Personal Mastery ${ }^{4}$	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{gathered} \text { Moderate }^{5} \\ (\mathrm{~N}=343) \\ \hline \end{gathered}$	ADL Difficulty	
						Receives No Help ( $\mathrm{N}=478$ )	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=181) \\ & \hline \end{aligned}$
I can do just about anything \| really set my mind to.							
Disagree strongly	7.7	7.2	7.3	10.2	5.7	6.1	16.2
Disagree somewhat	19.5	15.1	23.8	20.7	16.6	19.9	24.3
Agree somewhat	26.3	29.2	23.8	24.7	26.4	28.8	19.3
Agree strongly	46.5	48.6	45.1	44.4	51.4	45.2	40.2
I often feel helpless in dealing with the problems of life.							
Disagree strongly	37.4	40.4	37.6	28.1	42.3	39.5	21.4
Disagree somewhat	33.1	34.5	30.6	35.5	32.4	34.1	31.6
Agree somewhat	19.6	16.3	21.6	24.0	16.1	19.6	27.0
Agree strongly	9.9	8.8	10.3	12.3	9.3	6.8	20.0

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than $2 \%$ missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Adapted from: Pearlin LI, Schooler C. (1978). The structure of coping. J Health Soc Behav 18:2-21.
${ }^{4}$ Categories for each item may not add up to $100 \%$ due to rounding.
${ }^{5}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).

# Cardiovascular Diseases and Diabetes 

M. Chiara Corti, Jeff D. Williamson, Caroline L. Phillips, Farida Raułaharju, Pentti M. Rautaharju, Luigi Ferrucci, Frederick L. Brancati, Linda P. Fried

Cardiovascular disease (CVD) and, in particular, coronary heart disease (CHD) remain the leading causes of death in men and women 65 years and older, despite the decline in absolute mortality rates that has been seen in both sexes since 1968 (Feinleib and Gillum, 1986). In women, the prevalence of CHD morbidity has increased, in part as a result of reduced case fatality rates and in part as a result of longer life expectancy (Nickel and Chirikos, 1990). Consequently, women surviving a heart attack may live with the symptoms and functional consequences of their heart disease for many more years. In 1991, more than half of the yearly health care costs related to CVD were for women (Eaker et al., 1993).

Heart disease is also one of the leading causes of disability in women (German and Fried, 1989). In a recent study that asked older participants to assess the condition causing their disability (Ettinger et al., 1994), heart disease ranked second. Its main impact was in the mobility and exercise tolerance domains (Fried et al., 1994), such as walking, climbing stairs, or doing heavy housework. Estimates of the percentage of women with CHD who are disabled by their illness range from 47 percent in women age 65 to 74 years to 55 percent in women age 75 years and older (Soldo and Manton, 1985).

Diabetes mellitus, the sixth leading cause of death among those age 65 and older, affects ap. proximately 10 percent of older women and is an important cause of morbidity and premature mortality (National Diabetes Data Group, 1985).

Diabetic patients, especially those in poor metabolic control, are susceptible to a series of long. term micro- and macrovascular complications that can affect every aspect of physical function (Nathan, 1993). Data from the National Health Interview Survey indicate a twofold higher likelihood of self-reported physical limitations in diagnosed diabetics compared with the general U.S. population (Drury, 1985).

As people get older, ascertaining their clinical symptoms does not fully identify the impact of a disease on physical function. Older persons may underreport symptoms related to CVD because they curtail their physical activity to avoid the onset of symptoms or because their physical function is already impaired by other comorbid conditions. In addition, asymptomatic events such as silent myocardial infarctions (Mittelmark et al., 1993) and atypical symptoms (Bayer et al., 1986) are common in older people. Finally, the reporting of symptoms or conditions can be influenced by social, psychological, and cognitive factors (Kukull et al., 1994).

Noninvasive, objective measures of clinical or subclinical disease are therefore vital in estimating the prevalence of cardiovascular diseases in an older population and in fully evaluating the impact of these conditions on physical function (Bild et al., 1993; Kuller et al., 1994). This chapter describes (1) the prevalence of cardiovascular diseases in disabled older women according to both objective examination and self-report of conditions and symptoms and (2) the association of these measures with age and level of disability.

## Self-Reported Cardiovascular Conditions and Diabetes

A trained interviewer asked participants whether they were ever told by a doctor that they had angina or chest pain due to heart disease, heart attack or myocardial infarction, congestive heart failure, high blood pressure, rheumatic heart or valvular heart disease, lower extremity arterial disease, or diabetes. The women were also asked whether they had ever had coronary artery bypass surgery or surgery on the arteries of the legs (Table 9.1).

When the total prevalence rates of CVD conditions in the study population (Table 9.1) are compared with prevalence rates in the ineligible population (Chapter 1, Table 1.3), the association between CVD conditions and disability status is evident. The prevalence of these conditions in the study population is two to three times higher than in the ineligible population (Table 1.3).

In the study population, about one in five women reported a history of angina, myocardial infarction, and diabetes, and nearly 60 percent reported high blood pressure (Table 9.1). The proportion of those who reported high blood pressure, diabetes, and heart valve problems tended to decrease with age, with the lowest rates occurring, in general, in participants age 85 years and older. This may be related to selective survival of women without these conditions. Rates of coronary artery bypass surgery also tended to be higher in women age 65 to 74 years than in the oldest old (Table 9.1). Reported rates of congestive heart failure and diabetes were greatest in those receiving help with activities of daily living (ADLs). Rates of coronary artery bypass surgery decreased with increasing severity of disability, from 5.5 percent in women with moderate disability to 0.7 percent in women who received help with ADLs (Table 9.1). This relationship was not seen for lower extremity arterial surgery.

## Cardiovascular Disease Symptoms

The presence of cardiovascular symptoms, shown in Table 9.2, was determined by the answers to a series of questions. Chest pain was defined as nonexertional if the participant reported any pain or discomfort in her chest and did not report the pain when walking, or did not walk at all. Exertional chest pain was defined as pain or discomfort in the chest that was reported when walking on level ground and/or when walking uphill or hurrying, utilizing the standardized questions from the Rose Questionnaire (Rose, 1962). Orthopnea was assessed by asking the respondent whether she became short of breath at night sleeping flat or on only one pillow. Paroxysmal nocturnal dyspnea was determined by asking the participant whether she woke up at night gasping for breath. Intermittent claudication was ascertained with the Rose Questionnaire (Rose, 1962) and was defined as being present if the participant reported all of the following symptoms: pain in either leg when walking, the localization of the pain in her calf or calves, and the relief of this pain when walking stopped. Ankle swelling was considered present if the respondent reported foot or ankle swelling that developed or worsened during the day and decreased at night.

Clinical symptoms related to cardiovascular diseases tended to be less prevalent among women 85 years and older compared to younger women (Table 9.2), possibly because of selective survival of those without these problems. Interesting patterns of symptoms were seen in relation to level of disability. With increasing severity of disability there was a decrease in exertional chest pain, little difference in intermittent claudication, and a substantial increase in orthopnea or paroxysmal nocturnal dyspnea. The higher rates of exertional chest pain in the least disabled subgroup are probably a result of the fact that less disabled people are more likely to undertake activities that can trigger exerciserelated clinical symptoms.

## Clinical Signs and Measures of Cardiovascular Disease

Clinical signs and cardiovascular disease measures were assessed by a trained nurse during the physical examination performed in the participant's home, according to standardized protocols (Table 9.3). The presence of pulmonary rales (defined as bilateral rales that were audible with the stethoscope and did not clear with coughing) increased from 4.1 percent in women age 65 to 74 years to 13.3 percent in those age 85 years and older. Heart sounds were auscultated in a sitting position at Erb's point. Systolic and diastolic murmurs were defined as absent, present, or unknown. Almost one-third ( 28.9 percent) of women had an audible systolic murmur, a finding that was more common in women age 85 years and older (37 percent).

The prevalence of ankle edema, identified on examination using local pressure on the tibia (Table 9.3), differed from self-reported ankle edema, assessed by history of ankle swelling (Table 9.2). Most notably, ankle edema on exam increased with age, while self-reported ankle swelling decreased with age. Those age 65 to 74 years reported more ankle swelling than was found on exam, while those 85 years and older reported less swelling than was found on exam. A marked increase in ankle edema was observed with increasing level of disability (Table 9.3).

Blood pressure was measured in a semirecumbent position with the use of a mercury sphygmomanometer and a cuff of appropriate size on the right arm, following the protocol of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (1988). The average of three measurements of the systolic (SBP) and diastolic blood pressure (DBP, recorded at the fifth Korotkoff sound) was used to classify participants into blood pressure categories. The categories were defined, according to the protocol (Joint National Committee, 1988), as follows: normotensive, DBP less than

90 mmHg and SBP less than 140 mmHg ; borderline isolated systolic hypertension, DBP of less than 90 mmHg and SBP of 140 to 159 mmHg ; isolated systolic hypertension, DBP of less than 90 mmHg and SBP of at least 160 mmHg ; diastolic hypertension, DBP of at least 90 mmHg with any systolic blood pressure.

To assess the ankle-arm blood pressure index (AABPl), a standard mercury manometer was used to measure, in rapid succession, the SBP in the right arm and both legs with the subject in a semi-recumbent position. The SBP in the right and left posterior tibial arteries was measured twice using a standard arm blood pressure cuff applied just above the malleoli and an $8 \cdot \mathrm{Mhz}$ Doppler stethoscope (Parks Model 841-A). To calculate the AABPl the higher of two SBPs in the left posterior tibial artery was averaged with the higher of two SBPs in the right posterior tibial artery, and the result was divided by the higher of two right brachial artery SBPs, also measured with the Doppler stethoscope (Newman et al., 1993). The ratio was categorized in five groups: less than $0.8,0.8$ to less than $0.9,0.9$ to less than $1.0,1.0$ to 1.5 , and greater than 1.5 (Newman et al., 1993).

Blood pressure measurement revealed that the percentage of women with normal blood pressure decreased with increasing age, a result of an increase in the proportion of women with isolated systolic hypertension at older ages (Table 9.3). In contrast to these findings, selfreport of high blood pressure (Table 9.1) was less common in women age 85 years and older. More aggressive pharmacologic treatment of high blood pressure in younger women could explain these findings. As severity of disability increased, the percentage of women who were normotensive decreased, a result of modest increases in all three categories of hypertension.

Approximately 12.5 percent of women had an $A A B P I$ less than 0.8 . This finding was more common in the oldest women ( 17.5 percent) and in those recciving help in ADLs ( 14.9 percent). Exercise-induced symptoms, suggestive of in-
termittent claudication (Table 9.2), were compared with the actual measurement of the AABPI, which allows for a more objective evaluation for the presence of peripheral vascular disease (Table 9.3). Older women reported a lower prevalence of peripheral vascular disease symptoms than the younger participants (Table 9.2 ), but the proportion of women with an AABPI less than 0.8 was, in fact, higher among women 85 years and older (Table 9.3). In addition, the proportion of women in whom values of AABPI could not be obtained increased with age and disability level. These findings suggest that the prevalence of peripheral arteriopathy is likely to be underestimated in older persons with reduced mobility when the diagnosis relies on symptoms only.

## Electrocardiographic Results

Twelve-lead electrocardiograms (ECGs) were recorded using the MAC PC-DT ECG Recorder (Marquette Electronics Inc., Milwaukee, WI). ECGs were stored electronically and transmitted to a centralized reading center (Epicare) for classification of electrocardiographic abnormalities using the NOVACODE measurement and classification system (Rautaharju et al., 1990).

## Exclusion Criteria

Participants with artificial pacemakers ( $\mathrm{N}=$ 15, 1.1 percent), with missing information on pacemakers ( $\mathrm{N}=5,0.5$ percent), and with inadequate quality or no ECG data ( $\mathrm{N}=29,2.9$ percent) were excluded from this analysis, leaving a total of 953 participants ( 95 percent) with valid ECG data (Table 9.4). In subjects with major ventricular conduction defects, coding was not done for major Q/QS waves, left ventricular hypertrophy and ST-T wave abnormalities. Similarly, left ventricular hypertrophy and major Q/QS waves precluded coding of ST-T wave abnormalities, and atrial fibrillation or flutter precluded coding of first-degree atrioventricular block.

## Classification

Major ECG abnormalities were classified as follows, according to the Minnesota code (Blackburn et al., 1960):

1. Major $\mathrm{Q} / \mathrm{QS}$ waves (codes 1-1, 1-2 except 1-28)
2. Left ventricular hypertrophy (high amplitude $R$ waves with major or minor ST-T abnormalities, codes $3-1,3-3$ with $4-1$ to $4-3$, or $5-1$ to 5 3)
3. Isolated major ST-T wave abnormalities (codes 4-1, 4-2, 5-1, 5-2 without 3-1, 3-3, 1-1 to 1-3)
4. Atrial fibrillation or atrial flutter (code 8-3)
5. First-degree atrioventricular block (code 6-3)
6. Ventricular conduction defects: left bundle branch block (code 7-1); right bundle branch block (code 7-2); intraventricular block of indeterminate type with QRS interval $\geq 120 \mathrm{~ms}$ (code 7-4)

## Electrocardiographic Findings and Abnormalities

A heart rate less than or equal to 60 was recorded in 18.8 percent of the participants. A heart rate greater than 90 was present in 6.0 percent of the entire population and tended to be more prevalent in women age 65 to 74 years ( 8.8 percent) and in those receiving help with ADLs (10.4 percent).

Major electrocardiographic abnormalities were common in this cohort of disabled women. Almost one-third ( 29.2 percent) of the participants had at least one of the six major abnormalities. The prevalence of major Q/QS waves and ventricular conduction defects tended to increase, in general, with age and level of disability, a trend also noted for the presence of any of the six major abnormalities. The prevalence of atrial fibrillation or flutter and left ventricular hypertrophy clearly increased with increasing age, while no consistent association was observed with level of disability. The prevalence of first-
degree atrioventricular block in the oldest old (8.9 percent) and in those receiving help with ADLs (10.8 percent) was approximately double the prevalence in those age 65 to 74 years ( 4.8 percent) and in those with moderate disability (5.1 percent).

## Summary

These findings reinforce the importance of combining clinical findings and physical assessment to ascertain the presence of diseases in population studies of older persons. In an older and disabled population, this approach is essential not only to validate the presence of the disease, but is potentially important in clarifying the trajectory between preclinical disease, clinical disease, impairment, and disability.

## References

Bayer AJ, Chadha JS, Farag RR, Pathy MS. (1986). Changing presentation of myocardial infarction with increasing old age. J Am Geriatr Soc 34: 263-266.

Bild DE, Fitzpatrick A, Fried LP, Wong ND, Haan MN, Lyles M, Bovill E, et al. (1993). Agerelated trends in cardiovascular morbidity and physical functioning in the elderly: The Cardiovascular Health Study. $J$ Am Geriatr Soc 41:1047-1056.

Blackburn H, Keys A, Simonson E, Rautaharju P, Punsar S. (1960). The electrocardiogram in population studies, a classification system. Circulation 21:1160-1175.

Drury TF. (1985). Disability among older diabetics. Diabetes in America. National Institute of Diabetes and Digestive and Kidney Diseases. DHHS Pub. No. 85-1468. p. XXVIII-1-22.

Eaker ED, Chesebro JH, Sacks FM, Wenger NK, Whisnant JP, Winston M. (1993). Cardiovascular disease in women. Circulation 88: 1999-2009.

Ettinger WH, Fried LP, Harris T, Shemansky L, Schulz R, Robbins J for the CHS Collaborative Research Group. (1994). Self-reported causes of physical disability in older pcople: The Cardiovascular Health Study. J Am Geriatr Soc 42:1035-1044.

Feinlieb M, Gillum RF. (1986). Coronary heart disease in the elderly: The magnitude of the problem in the United States, In: Wenger NK, Furberg CD, Pitt E, eds. Coronary Heart Disease in the Elderly. New York: Elsevier, pp. 29-56.

German PS, Fried LP. (1989). Prevention and the elderly: Public health issues and strategies. Annu Rev Public Health 10:319-32.

Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. (1988). The 1988 report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. Arch Intern Med 148:1023-1038.

Kukull WA, Brenner DE, Speck CE, Nochlin D, Mckormick W, Teri L. Pfanschmidt ML. et al. (1994). Causes of death associated with Alzheimer's disease: Variation by level of cognitive impairment before death. J Am Geriatr Soc 42:723-726.

Kuller L, Borhani N, Furberg C, Gardin J, Manolio T, O'Leary D, Psaty B, et al. (1994). Prevalence of subclinical atherosclerosis and cardiovascular disease and association with risk factors in the Cardiovascular Health Study. Am J Epidemiol 139:1164-1179.

Mittelmark MB, Psaty BM, Rautaharju PM, Fried LP, Borhani NO, Tracy RP, Gradin JM, et al. for the CHS Collaborative Research Group. (1993). Prevalence of cardiovascular diseases among older adults. The Cardiovascular Health Study. Am J Epidemiol 137:311-317.

Nathan DM. (1993). Long term complications of diabetes mellitus. $N$ Engl $J$ Med 328:1676-1685.

National Diabetes Data Group. (1985). Diabetes in America. National Institute of Diabetes and Digestive and Kidney Diseases. DHHS Pub. No. 85-1468.

Newman AB, Siskovick DS, Manolio TA, Polak J, Fried LP, Borhani NO, Wolfson SK. (1993). An-kle-arm blood index as a marker of atherosclerosis in the Cardiovascular Health Study. Circulation 88:837-845.

Nickel JT, Chirikos TN. (1990). Functional disability of elderly patients with long-term coronary heart disease: A sex-stratified analysis. $J$ Gerontol Soc Sci 45:S60-S68.

Rautaharju PM, MacInnis PJ, Warren JW, Wolf HK, Rykers PM, Calhoun HP. (1990). Methodology of ECG interpretation in the Dalhousie Program; Novacode ECG classification procedures for clinical trials and population health surveys. Meth Inform Med 29: 362-374.

Rose G. (1962). The diagnosis of ischaemic heart pain and intermittent claudication in field surveys. Bull WHO 27:645-658.

Soldo BJ, Manton KG. (1985). Health status and service needs of the oldest old: Current patterns and future trends. Milbank Mem Fund Q 63: 286-319.

Table 9.1: Percent Prevalence of Self-Reported Cardiovascular Conditions and Events ${ }^{1,2}$

Condition	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{3} \\ & (N=343) \end{aligned}$	ADL Difficulty	
						Receives No Help $(N=478)$	Receives Help $(N=181)$
Angina ${ }^{4}$	20.5	20.1	22.3	17.1	20.9	21.8	16.3
Heart attack or myocardial infarction ${ }^{4}$	20.3	16.2	25.1	19.6	23.8	17.9	20.0
Congestive heart failure ${ }^{4}$	8.9	8.0	10.4	7.2	8.9	6.9	14.3
Coronary artery bypass surgery ${ }^{5}$	3.5	4.0	3.9	1.3	5.5	3.2	0.7
Lower extremity arterial disease ${ }^{6}$	6.7	7.1	6.7	5.2	7.5	6.4	5.7
Surgery on leg arteries ${ }^{7}$	5.0	5.9	4.2	4.6	4.8	4.9	5.9
High blood pressure ${ }^{4}$	58.7	62.5	56.9	52.7	57.4	58.9	61.1
Diabetes ${ }^{4}$	20.5	23.7	21.7	7.8	19.1	16.0	35.8
Rheumatic heart or heart valve problems ${ }^{6}$	8.9	8.2	11.3	4.6	9.6	9.8	5.2

(Women's Health and Aging Study, screening and baseline interviews, 1992-1995)
${ }^{1}$ All variables have less than $1 \%$ missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ The screener question is in the form "Has a doctor ever told you that you had (a) . . ?" The presence of the condition was confirmed in the baseline interview.
${ }_{6}^{5}$ Have you ever had coronary artery bypass surgery?
${ }^{6}$ Has a doctor ever told you that you had intermittent claudication or pain in your legs from blockage of the arteries (peripheral vascular disease or atherosclerosis)?
${ }^{7}$ Have you ever had surgery on the arteries in your legs?
${ }^{6}$ The question is in the form "Has a doctor ever told you that you had . . . ?"

Table 9.2: Percent Prevalence of Cardiovascular Symptoms ${ }^{1,2}$

Symptom	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{gathered} M_{0 d e r a t e}^{3} \\ (\mathrm{~N}=343) \end{gathered}$	ADL Difficulty	
						Receives No Help ( $\mathrm{N}=478$ )	Receives Help $(N=181)$
Chest pain ${ }^{4}$							
Nonexertional ${ }^{5}$							
Pain reported but does not walk ${ }^{6}$	1.5	1.2	1.6	2.2	0.0	0.7	7.0
Not precipitated by walking ${ }^{7}$	24.6	27.8	24.2	16.5	25.0	26.3	19.1
Exertional							
Walking uphill or hurrying only	8.5	10.0	9.2	2.6	11.5	8.4	3.0
Walking on level ${ }^{8}$	7.8	8.7	7.9	5.0	7.0	7.9	9.1
Orthopnea or paroxysmal nocturnal dyspnea ${ }^{9}$	24.7	26.5	25.1	18.2	19.1	25.4	34.1
${ }_{\text {Intes }}$ Inttent claudication ${ }^{10}$							
Yes ${ }^{\text {Does not walk }}{ }^{11}$	13.6 4.4	14.3 4.2	14.8 4.4	8.6 4.9	13.1 0.8	13.1 1.8	16.2 19.0
Ankle swelling ${ }^{12}$	48.5	52.8	46.3	41.6	42.6	52.3	50.1

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than $3 \%$ missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
4 "Yes" response to "Have you ever had any pain or discomfort in your chest?"
${ }^{5}$ Whether chest pain was classified as exertional or nonexertional was determined by two questions: (1) Do you get this pain or discomfort when you walk uphill or hurry? (2) Do you get it when you walk at an ordinary pace on the level?
6 "Cannot walk" response to "When you walk, do you use a cane?" OR "Doesn't walk" response to question about pain when walking uphill or hurrying.
${ }^{7}$ Pain not precipitated when walking uphill or hurrying or by walking on the level.
${ }^{8}$ Pain reported when walking on the level AND "Yes" or "Doesn't walk uphill or hurry" response to question about pain when walking uphill or hurrying.
9 "Yes" response to either of the following: (1) Do you get short of breath at night if you sleep flat or on only one pillow? (2) Do you wake up at night gasping for breath?

10 "Yes" responses to all of the following questions: (1) Do you get pain in either leg when you walk? (2) Do you get this pain in your calf or calves? (3) If you stand still is the pain relieved?
11 "Doesn't walk" response to "Do you get pain in either leg when you walk?"
12 "Yes" responses to both: (1) Have you ever had swelling of your feet or ankles? (2) Did the swelling tend to come on during the day and go down at night?

Table 9.3: Percent Prevalence of Clinical Signs and Distribution of Cardiovascular Measures ${ }^{1}$

Exam Finding	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Level			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \end{gathered}$	$\begin{gathered} 75.84 \\ (N=311) \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \end{gathered}$	$\begin{aligned} & \text { Moderate }^{2} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ( $N=478$ )	Receives Help $(N=181)$
Pulmonary rales ${ }^{3}$	6.0	4.1	5.4	13.3	6.5	5.8	5.7
Heart murmurs ${ }^{3}$							
Systolic	28.9	24.9	30.2	37.0	31.2	26.6	30.5
Diastolic	13.5	11.6	14.0	17.7	14.0	14.2	10.6
Systolic and diastolic	4.7	3.4	5.4	6.7	4.9	4.3	5.6
Uninterpretable ${ }^{4}$	3.6	2.6	4.0	5.4	1.9	3.8	6.4
Bilateral ankle edema ${ }^{3}$	32.7	23.0	35.5	53.8	25.7	33.5	45.2
Blood pressure ${ }^{\text {3.5,6 }}$							
Normotensive ${ }^{7}$	52.4	56.3	52.0	41.9	58.0	49.6	48.6
Borderline isolated systolic hypertension ${ }^{8}$	26.5	26.4	25.9	28.1	23.4	28.3	27.9
Isolated systolic hypertension ${ }^{9}$	16.2	10.7	18.8	25.2	14.9	16.5	18.1
Diastolic hypertension ${ }^{10}$	5.0	6.6	3.3	4.8	3.8	5.7	5.4
Ankle-arm blood pressure index ${ }^{5,11}$ Less than 8	12.5	10.6	12.6	17.5	13.6	10.8	14.9
. 8 to less than . 9	7.9	6.6	8.0	11.6	9.1	7.0	8.2
. 9 to less than 1.0	11.4	11.4	11.7	10.3	10.4	13.4	7.9
1.0 to less than 1.5	61.5	67.9	59.1	49.2	62.4	62.9	55.5
1.5 and over	0.7	0.5	0.6	13	0.3	1.1	0.0
Not obtainable	6.1	3.0	7.9	10.2	4.2	4.8	13.4

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ Descriptive statistics are based on weighted data.
${ }^{2}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{3}$ These variables have less than $1 \%$ missing data. Results are based on non-missing data.
${ }^{4}$ Systolic or diastolic murmur classified as "None" and other given as "Don't know" or "Not ascertained;" or systolic and diastolic murmur both classified as "Don't know."
${ }^{5}$ Categories may not add up to $100 \%$ due 10 rounding.
${ }^{6}$ Semi-recumbent auscultatory blood pressure (BP).
${ }^{7}$ Diastolic BP less than 90 mmHg and systolic BP less than 140 mmHg .
${ }^{8}$ Diastolic BP less than 90 mmHg and systolic BP at least 140 mmHg and less than 160 mmHg .
${ }^{9}$ Diastolic BP less than 90 mmHg and systolic BP at least 160 mmHg .
${ }^{10}$ Diastolic BP at least 90 mmHg .
" Mean of the higher of two left and right posterior tibial semi-recumbent systolic BP's divided by the higher of two right brachial semi-recumbent systolic BP's.

Table 9.4: Electrocardiographic Results ${ }^{1,2}$

	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ( $\mathrm{N}=478$ )	Receives Help $(\mathrm{N}=181)$
Number with valid $\mathrm{ECG}^{4}$ Percent with valid ECG ${ }^{4}$	$\begin{aligned} & 953 \\ & 95.5 \end{aligned}$	370 95.5	299 96.2	$\begin{gathered} 284 \\ 93.8 \end{gathered}$	$\begin{gathered} 327 \\ 95.5 \end{gathered}$	$\begin{array}{r} 454 \\ 95.1 \end{array}$	$\begin{gathered} 172 \\ 96.6 \end{gathered}$
```Heart rate (beats per minute)}\mp@subsup{}{}{5 60 or less (%) 61-90 (%) Over 90 (%)```	18.8 75.2 6.0	18.5 72.7 8.8	20.5 75.1 4.4	14.5 83.1 2.4	19.3 75.2 5.5	20.1 75.1 4.8	13.9 75.7 10.4
Mean heart rate	71.4	72.5	70.6	70.5	70.9	70.7	74.4
Electrocardiographic abnormalities (\%) ${ }^{6}$							
Major Q/QS waves ${ }^{7}$	8.3	7.6	8.7	9.4	6.3	9.0	10.4
Left ventricular hypertrophy ${ }^{7}$	1.2	0.5	1.1	3.5	1.0	1.5	0.9
Isolated major ST-T wave abnormalities ${ }^{7}$	0.6	0.3	0.9	0.8	0.4	0.7	0.9
Atrial fibrillation or flutter	4.2	3.3	4.4	6.7	5.2	2.7	6.5
First-degree atrioventricular block ${ }^{8}$	7.3	4.8	9.3	8.9	5.1	7.6	10.8
Ventricular conduction defects ${ }^{9}$	11.8	8.7	13.9	15.4	9.5	13.1	12.9
Left bundle branch block	2.2	1.6	2.7	2.8	2.1	2.2	2.6
Right bundle branch block Intraventricular block of	4.6	2.6	5.7	7.8	2.3	6.1	5.6
indeterminate type	4.9	4.4	5.5	4.9	5.1	4.8	4.8
Any electrocardiographic abnormality above	29.2	22.6	33.1	38.2	23.0	31.0	37.2

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data for participants with valid ECG. Results are for participants with valid ECG and are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ Participants with electronic pacemakers were not included.
${ }^{5}$ Categories may not add up to 100% due to rounding.
${ }_{7}^{6}$ See text for definitions of ECG abnormalities.
7 Diagnosis not applied to participants with ventricular conduction defects.
${ }^{8}$ Diagnosis not applied to participants with atrial fibrillation or flutter.
${ }^{9}$ Categories may not add up to the percent with ventricular conduction defects due to rounding.

10

Exercise Tolerance and Body Composition

Eleanor M. Simonsick, Linda P. Fried

Cardiorespiratory fitness, commonly referred to as exercise tolerance, declines with increasing age, typically beginning in the third decade. This decline has been attributed to disease processes, disuse, and aging (Bortz, 1982; Fries and Crapo, 1981). A minimum level of exercise tolerance is necessary to perform many tasks that are important to independent functioning. Low-level cardiorespiratory fitness is a major cause of functional difficulties in old age (Bruce, 1985); it is estimated that basic self-care tasks can use as much as 90 percent of the exercise capacity of a sedentary older adult (Blessey, 1986).

Body weight and body composition also have important implications for physical functioning of older persons. Both high and low weight have been associated with functional difficulties and disability in old age (Ensrud et al., 1994; Galanos et al., 1994; Harris et al., 1989; Launer et al., 1994; Pinsky et al., 1985). Heavy weight is also a major risk factor for several diseases and conditions, including diabetes mellitus and coronary artery disease, which in themselves can affect function. Excess body weight can also exacerbate symptoms associated with particular conditions, for example, osteoarthritis of the knee (Ettinger et al., 1994). Low weight, particularly when it results from weight loss in old age, can be indicative of poor or declining health and is a risk factor for mortality (Fischer and Johnson, 1990).

This chapter presents data on exercise tolerance and body composition in disabled older women participating in the Women's Health and Aging Study (WHAS).

Exercise Tolerance

Exercise tolerance was estimated using two different approaches: (1) a questionnaire-based assessment derived from the Specific Activity Scale developed by (ioldman et al. (1981) and (2) direct measurement using the seated step test developed by Smith and Gilligan (1983), administered by a nurse in the participant's home.

The Specific Activity Scale used in the WHAS was modified to improve its applicability to older disabled women. A few of the very demanding activities were excluded and some low-level activities were added. The modified scale consists of 18 activities organized into six groups according to the estimated metabolic equivalents (METs) required to perform the activity. (One MET is equal to 3.5 milliliters of oxygen consumed per kilogram of body weight per minute, the average value for oxygen consumption at rest). The following groups of activities describe exercise tolerance from lowest to highest: level 1 (<2 METs): sit quietly in a chair; level 2 (2 to 2.3 METs): dress, iron, stand for 2 hours, play cards; level 3 (3 to 5 METs): strip and make a bed, mop floors, handwash clothes, walk 2.5 mph , bowl; level 4 (4.5 to 5.2 METs): walk down a flight of stairs; level 5 (5 to 6 METs): carry a light parcel up stairs, garden, dance a fox trot, walk 4 mph ; and level 6 (7 to 9 METs): carry 24 lbs. up 8 steps, shovel snow or spade soil. walk 5 mph or jog.

To determine exercise tolerance, participants were asked if they could do the first task in a
group, regardless of any symptoms they experienced while doing the task. If they could not do the first activity in a group, they were asked if they could do the second activity and so on. If participants stated they could do any task in a group, they were classified as able to perform activities at the MET level the group represents. If they could not do any activity in a group they were classified as having exercise tolerance below that level. The exercise tolerance score is the highest activity level from 1 to 6 that the participant could perform regardless of symptoms. The pattern of questioning allows participants to skip over activities in a group that they do not or cannot do for reasons unrelated to cardiorespiratory fitness. To achieve a particular score, the participant need only report that she could do any one of the activities in a group.

Table 10.1 gives the exercise tolerance level of study participants as measured by the modified Specific Activity Scale. Sixty-six percent of the population had an exercise tolerance level between 3 and 6 METs (score of 3 to 5), indicating adequate cardiorespiratory fitness to perform activities equivalent to walking at least 2.5 miles per hour (normal walking pace) on level ground. Twenty-three percent had higher and 11 percent had lower levels of exercise tolerance. This 11 percent had barely adequate fitness to bathe (2.5 to 3.5 METs) and dress (2.4 to 4.0 METs) (Blessey, 1986).

Exercise tolerance level declined with increasing age and increasing severity of disability. Sixty-three percent of participants age 65 to 74 years could perform activities requiring 5 METs, compared with 57 percent of those 75 to 84 years and only 40 percent of women 85 years and older. The proportion of women with extremely low exercise tolerance among those age 85 years and older (19 percent) was more than twice that found in the youngest participants (8 percent). The disparity in fitness level across groups was even greater by disability level. While 71 percent of the moderately disabled and 56 percent of those with difficulty in activities of daily living (ADLs) who did not receive help could perform
activities requiring 5 METs , only 26 percent of women who required help with ADLs had this level of exercise tolerance. Similarly, while 3 and 8 percent of the less severely disabled had extremely low exercise tolerance (score 1 or 2), 41 percent of women who required help in ADLs had extremely low fitness capacity.

For many tasks, particularly those in which speed is not a factor, the level of effort expended can vary tremendously across individuals. The Specific Activity Scale therefore represents only a crude approximation of fitness level. Objective measurement of exercise tolerance, that is, observed performance of standardized exertional tasks with known energy requirements, may be a more accurate assessment of fitness. For this reason, a graded exercise test was included in the nurse's baseline examination. Because of the low functional level and poor health status of a substantial proportion of the study population, a low-level graded exercise step test, performed in a seated position (Smith and Gilligan, 1983), was selected.

The seated step test is a four-stage, graded low-level test of exercise tolerance developed specifically for use in older adults (Smith and Gilligan, 1983). Stage 1 of the test goes to 2.3 METs, and stages 2, 3, and 4 go to 2.9, 3.5, and 3.9 METs, respectively. For comparison, 3.5 METs of energy expenditure is equivalent to walking 3.5 miles per hour, a fairly brisk pace. The test begins with the subject seated in a straight-backed chair with both feet flat on the floor. A step is placed in front of the subject such that when the leg is extended, the heel can reach the top of the step and the ankle is even with the edge. A metronome, set for 1 second beats, is used to keep time. On the first beat, the subject touches the front edge of the step with the arch of one foot, on the second she returns her foot to the floor, alternating feet. To ensure the safety of study participants, American College of Sports Medicine (ACSM) guidelines for exercise testing of older adults (ACSM, 1991) were used to establish (1) exclusion criteria for participation in the seated step test and (2) stopping criteria for per-
sons who started the test. During testing, the participant wore an ambulatory electrocardiograph cabled to a notebook computer from which a rhythm strip was run during each stage, an oximeter finger probe that displayed pulse rate and oxygen saturation, and a blood pressure cuff. The Borg Perceived Exertion Scale (Borg and Linderholm, 1974) was used to ascertain how hard the participant felt she was working.

Each stage lasts 3 minutes. Stage 1 of the test uses a 6 -inch step. After 2 minutes (beginning at 1 minute 45 seconds), heart rate and oxygen saturation were recorded, a 30 -second rhythm strip was run, blood pressure was checked, the Borg scale was presented, and stopping criteria were evaluated. If no stopping criteria were reached and the participant was willing, the test continued for another minute. After 3 minutes, the nurse stopped and cleared the stopwatch, and again recorded Borg perceived exertion, heart rate, and oxygen saturation. If no stopping criteria were reached and the participant was willing, the test continued on to stage 2, using a 12 -inch step. The participant was instructed to keep stepping between stages. The procedures for each stage are identical. Stages 3 and 4 use an 18 -inch step, and stage 4 adds arm movement. Whenever stopping criteria were reached, the nurse took a blood pressure; ran a rhythm strip; and recorded heart rate, oxygen saturation, Borg perceived exertion, the presence of any signs and symptoms, and the stage at which the test was terminated.

Table 10.2 lists the exclusion criteria for the seated step test and the number and percentage of participants meeting each criterion. The most common reasons for exclusion included loud systolic murmur detected in the nurse examination; electrocardiogram (ECG) abnormalities, particularly wide QRS and atrial fibrillation; severe leg weakness as determined by the nurse; elevated blood pressure; and angina. The majority of the women who were excluded met only one of the exclusion criteria. A total of 442 participants (44.1 percent) met one or more exclusions; an additional 23 (2.3 percent) did not feel they could
do the test. The rate of exclusion increased stepwise with increasing age from 34 percent of women age 65 to 74 years to over 55 percent of participants age 85 years and older. The rate of exclusion varied by disability level as well; about 40 percent of the moderately disabled and those with ADL difficulty who received no help and nearly 62 percent of the most severely disabled were excluded from the seated step test.

Figure 10.1 shows the number of women who completed each stage of the seated step test in 1 . minute intervals. When a participant failed to

Figure 10.1: Number of Women Completing Each Stage of the Seated Step Test in 1-Minute intervais'

(Women's Health and Aging Study, physical assessment. 1992. 1995)

If a participant started a stage but did not complete 2 minutes, she was assumed to have completed 1 minute. 533 women started the test and completed the first minute.
complete the first 2 minutes of a stage, it was assumed she completed 1 minute. A total of 537 of the 1,002 participants (53.6 percent) attempted the test; only 33 were able to complete the entire test. The likelihood of stopping was about the same during a stage as between stages. Fortyfive percent of the total study population (84 percent of those who started the test) completed the first stage, which had an estimated MET valuc of 2.3; 24 percent (44 percent of those who started) completed the second stage with an estimated

MET value of 2.9; 7 percent (13 percent of those who started) completed the third stage with an estimated MET value of 3.5 ; and 3 percent (6 percent of those who started) completed the fourth stage with an estimated MET level of 3.9. The highest drop-out rates occurred during the second stage and between the second and third stages.

Table 10.3 lists the reasons for stopping the test. Five hundred and four participants, 94 percent of those who started, stopped the seated step test before the end of the fourth stage. The two most frequent reasons for stopping, accounting for 70 percent of those who stopped, were related to participant reports of discomfort; 42 percent felt they could not continue and 28 percent perceived their exertion level to be 8 or greater. An additional 4 percent experienced shortness of breath. Very few participants met any of the clinical or objective stopping criteria. Less than 10 percent had an elevated heart rate, less than 3 percent had an elevated blood pressure, and less than 2 percent had abnormal ECG readings. Only one person (0.2 percent) with an abnormal ECG showed ST depression exceeding 1 millimeter, which resolved with cessation of exercise.

Figures 10.2 and 10.3 display the performance of participants who attempted the seated step test by age group and disability level, respectively. Participants age 65 to 74 and 75 to 84 years exhibited nearly identical patterns of test performance. Participants age 85 years and older stopped the test sooner and only one attempted (but did not complete) the fourth stage. Similar patterns of exercise performance were observed for disability level. The moderately disabled and women with ADL difficulty who received no help showed nearly identical test results; the most severely disabled group, women who received help with ADLs, exhibited much poorer performance on the seated step test. The most disabled women tended to stop the test sooner than the less disabled women; 61 percent completed the first stage and 13 percent completed the second

Figure 10.2: Among Persons Attempting Test, Percent Completing Each Stage of Seated Step Test in 1-Minute Intervals by Age Group ($\mathrm{N}=537)^{1}$

(Women's Health and Aging Study, physical assessment, 19921995)
${ }^{1}$ If a participant started a stage but did not complete 2 minutes, she was assumed to have completed 1 minute. 537 women started the test and completed the first minute.

Figure 10.3: Among Persons Attempting Test, Percent Completing Each Stage of Seated Step Test in 1-Minute Intervals by Disability Level ($\mathrm{N}=537$) ${ }^{1}$

(Women's Health and Aging Study, physical assessment, 19921995)
${ }^{1}$ If a participant started a stage but did not complete 2 minutes, she was assumed to have completed 1 minute. 537 women started the test and completed the first minute.
stage, in contrast to the less disabled women, of whom 75 percent and 31 percent completed the first and second stages, respectively. Differences across age groups and disability levels in actual test performance were relatively small owing to the strict exclusion criteria.

Body Composition

Body composition and fatness are represented by body mass index (BMI), which is derived from measured weight in kilograms divided by height in meters squared, and by triceps skinfold thickness. Height and weight were measured with the participant standing in stocking feet wearing light indoor clothing. The participant's head was positioned against a level doorway using a Frankfort plane, and height was measured to the nearest centimeter using a stadiometer. Weight was measured in kilograms using a bathroomtype digital scale. Knee height was measured using a mediform sliding caliper (Medical Express, Beaverton, OR) with the participant in a semi-recumbent position with her left knee and ankle bent at 90° angles. When standing height was unavailable, height in centimeters was estimated from the average of two knee height measurements using the following formula: $84.88+1.83$ (knee height) - 0.24 (age) (Chumlea et al., 1985).

Triceps skinfold thickness is a standard measure of body fatness and nutritional status. Skinfold thickness was measured at the midpoint of the upper right arm with Holtain skinfold calipers (Seritex, Carlstadt, NJ) to the nearest 0.2 millimeters in accordance with standard procedures (Lohman et al., 1988). If the difference between the first and second measure exceeded 2.0 millimeters, a third reading was done. Skinfold thickness values represent the mean of the first and second measures except when a third measure was taken which occurred for 70 (7 percent) of the participants. When the third measure fell within 2.0 millimeters of either the first or second measure, skinfold thickness was determined by averaging the third reading with
the next closest one. If the third measure was within 2.0 millimeters of both the first and second measures, all three were averaged.

Table 10.4 gives the mean and median values of BMI and the percentages under- and overweight based on the 15 th and 85 th percentiles, respectively, of BMI derived from the first National Health and Nutrition Examination Survey (NHANES 1) for females age 70 to 74 years (Must et al., 1991). Data are presented by age group, disability level, and race. For the total study population, the median BMl was 27.4 and the mean was 28.9 , a reflection of extreme obesity in a small number of participants. The prevalence of overweight in this population was greater than in the general population of women age 70 to 74 years, with over 28 percent having a BMI above the 85 th percentile value. Overweight, including extreme obesity (BMl greater than 35) was more prevalent in the Black than the White population, with over 37 percent having a BMI greater than the 85 th percentile.

The prevalence of under- and overweight varied greatly by both race and age group. Women age 65 to 74 years had the highest rate of overweight, with 34 percent of the White and 49 percent of the Black women having a BMI above the 85 th percentile. Underweight in this age group was rare. The prevalence of overweight dropped to 23 percent in women age 75 to 84 years and to 12.5 percent in the oldest participants. This decline was observed for both Blacks and Whites, although it was somewhat steeper for Blacks. Mirroring the decline in overweight was an increase in the prevalence of underweight with increasing age, from 6 percent in those age 65 to 74 years up to 20 percent in women age 85 years and older. Extreme low weight was not common in this population and underweight was no more prevalent in these disabled women than in community-dwelling women of similar age (Must et al., 1991).

For the most part, the prevalence of extremes of BMI did not vary with severity of disability. The two exceptions were the relatively high rate
of underweight (20 percent) in the most disabled White women and the relatively low rate of underweight (4.6 percent) in the most disabled Black women.

Table 10.5 presents the mean and median values of triceps skinfold thickness and the percentages of low and high values based on the 15 th and 85 th percentiles, respectively, of skinfold thickness derived from NHANES I for females age 70 to 74 years (Must et al., 1991). Data are presented by age group, disability level, and race. The mean thickness was 21.9 millimeters and the median was 20.7 millimeters which reflects the presence of extreme obesity in a small proportion of participants. Racial differences in skinfold thickness were less pronounced than those for BMI; Black participants had only slightly higher values than White participants and more similar percentages at the lower extreme.

Triceps skinfold thickness gives a somewhat different impression of the relative fatness of the study population than does BMI. On the basis of skinfold thickness, there does not appear to be a higher than expected prevalence of obesity; only 15 percent had a skinfold measurement at the 85 th percentile or above. In contrast, more than 25 percent had a skinfold thickness at the 15 th percentile or below. Analogous to the trend seen with BMI, the prevalence of high skinfold thickness was lower and the prevalence of low skinfold thickness was higher in the older age groups. Skinfold thickness did not vary much with disability level, with the exception of a moderately higher percentage of women with low values in the most disabled subgroup.

Summary

This population of disabled older women exhibits a broad range of exercise capacity, as assessed by both self-report and objective testing. The modified Specific Activity Scale (Goldman et al., 1981) gave a higher estimate of exercise tol-
erance than the seated step test (Smith and Gilligan, 1983), particularly considering that nearly half the study participants (those most likely to have the lowest levels of cardiorespiratory fitness), were excluded from the seated step test. Exercise tolerance assessments based on selfreported capacities, like the Specific Activity Scale, may overlook the role of compensatory strategies, such as reduced speed of performance and amount of work performed, and frequent rest periods (Fried et al., 1991). Extremely low exercise tolerance was common, yet low cardiorespiratory fitness did not consistently underlie functional limitation and disability in this population.

Amount of body fatness was also broadly distributed. On the basis of BMI, the study population appeared disproportionately overweight, particularly the African American women and those in the youngest age group. This observation is consistent with the well-established association between overweight and functional difficulties in older women (Ensrud et al., 1994; Galanos et al., 1994; Harris et al., 1989; Launer et al., 1994; Pinsky et al., 1985). The prevalence of severe underweight was relatively low in this disabled population, somewhat contrary to expectations (Galanos et al., 1994) and the conceptualization of frailty (Buchner and Wagner, 1992). The oldest old, however, tended to be thinner and had a markedly different distribution of BMI than younger women, suggesting an alteration in the relationship between physical function and body weight with increasing age.

References

American College of Sports Medicine. (1991). Guidelines for Exercise Testing and Prescription, 4 th ed. Philadelphia, PA:Lea \& Febiger.

Blessey RL. (1986). Energy cost in the physically impaired geriatric population. Topics Geriatr Res 2:33-43.

Borg G, Linderholm H. (1974). Perceived exertion and pulse rate during graded exercise in various age groups. Acta Med Scand 472:194206.

Bortz WM. (1982) Disuse and aging. JAMA 248:1203-1208.

Bruce RA. (1985). Functional aerobic capacity, exercise, and aging. In: Andres R, Bierman EL, Hazzard WR, eds. Principles of Geriatric Medicine. New York: McGraw-Hill, Inc.

Buchner DM, Wagner EH. (1992). Preventing frail health. Clin Geriatr Med 8:1-17.

Chumlea WC, Roche AF, Steinbaugh ML. (1985). Estimating stature from knee height for persons 60 to 90 years of age. J Am Gerialr Soc 33:116120.

Ensrud KE, Nevitt MC, Yunis C, Cauley JA, Seeley DG, Fox KM, Cummings SR. (1994). Correlates of impaired function in older women. J Am Geriatr Soc 42:481-489.

Ettinger WH, Davis MA, Neuhaus JM, Mallon KP. (1994). Long-term physical functioning in persons with knee osteoarthritis from HANES I: Effects of comorbid medical conditions. J Clin Epidemiol 47:809-815.

Fischer J, Johnson MA. (1990). Low body weight and weight loss in the aged. J Am Dietetic Assoc 90:1697-1706.

Fried LP, Herdman SJ, Kuhn KE, Rubin G, Turano K. (1991). Preclinical disability: Hypotheses about the bottom of the iceberg. J Aging Health 3:285-300.

Fries JF, Crapo LM. (1981). Vitality and Aging. New York: WH Freeman and Co.

Galanos AN, Pieper CF, Cornoni-Huntley JC, Bales CW, Fillenbaum GG. (1994). Nutrition and function: Is there a relationship between body mass index and the functional capabilities of community-dwelling elderly? .J Am Geriatr Soc 42:368-373.

Goldman L, Hashimoto B, Cook EF, Loscalzo A. (1981). Comparative reproducibility and validity of systems for assessing cardiovascular functional class: Advantages of a new Specific Activity Scale. Circulation 64:1227-1234.

Harris T, Kovar MG, Suzman R, Kleinman JC, Feldmen JJ. (1989). Longitudinal study of physical ability in the oldest-old. Am J Public Health 79:698-702.

Launer LJJ, Harris T, Rumpel C, Madans J. (1994). Body mass index, weight change, and risk of mobility disability in middle-aged and older women. JAMA 271:1093-1098.

Lohman T, Roche A. Mastasell R. (1988). Anthropometric Standardization Reference Manual. Champagne, 1L: Human Kinetics Books.

Must A, Dallal GE, Dietz WH. (1991). Reference data for obesity: 85 th and 95 th percentiles of body mass index ($\mathbf{w t / h t}{ }^{2}$) and triceps skinfold thickness. Am J Clin Nutr 53:839-846.

Pinsky JL, Branch LG. Jette AM, Haynes SG, Feinleib M, Cornoni-Huntley JC, Bailey KR. (1985). Framingham disability study: Relationship of disability to cardiovascular risk factors among persons free of diagnosed cardiovascular disease. Am J Epidemiol 122:644-656.

Smith EL, Gilligan C. (1983). Physical activity prescription for the older adult. Physician Sports Med 11:91-101.

Table 10.1: Exercise Tolerance: Specific Activity Scale Score (Percent) ${ }^{1,2,3}$

Specific Activity Scale ${ }^{4}$	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }^{5} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help $(N=478)$	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=181) \\ & \hline \end{aligned}$
Score (approximate range in METs) ${ }^{6}$							
$1(<2)$	5.6	3.4	6.8	9.0	0.5	3.7	23.0
2 (2-2.3)	5.5	4.5	5.1	9.6	2.1	3.9	17.9
3 (3-5)	20.1	19.8	18.1	26.4	16.2	23.3	19.4
4 (4.5-5.2)	11.9	9.6	13.5	14.7	10.1	12.7	14.0
5 (5-6)	33.5	34.6	35.1	25.9	41.3	31.8	21.1
6 (7-9)	23.3	28.1	21.5	14.4	29.8	24.7	4.6
Grouped score (approximate range in METs) ${ }^{6}$							
1-2 (0-2.3)	11.1	7.9	11.9	18.5	2.6	7.6	41.0
3-4 (3-5.2)	32.0	29.4	31.5	41.1	26.3	35.9	33.4
5-6 (5-9)	56.8	62.7	56.5	40.3	71.1	56.5	25.7

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }_{2}^{1}$ All variables have less than 2% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Goldman L, Hashimoto B, Cook EF, Loscalzo A. (1981). Comparative reproducibility and validity of systems for assessing cardiovascular functional class: Advantages of a new specific activity scale. Circulation 64:1227-1234.
${ }^{4}$ Categories may not add up to 100% due to rounding.
${ }^{5}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{6}$ Scale ranges from 1 through 6, inclusive, where 1 represents the lowest and 6 the highest level of exercise tolerance. METs = metabolic equivalents.

Table 10.2: Participants Meeting Specific Exclusion Criteria for Scated Step Test ${ }^{1}$

Exclusion	Number	Percent
History of:		
Aortic stenosis	0	0.0
Myocardial infarction (MI) in past 6 months	13	1.3
Unstable angina or angina at rest	41	4.1
Severe hip or knee pain due to arthritis	14	1.4
At time of visit:		
Bedridden	6	0.6
Chairbound	24	2.4
Acute infection	3	0.3
Unstable angina or angina at rest	12	1.2
On examination:		
Loud systolic murmur	87	8.7
Congestive heart failure	2	0.2
Shortness of breath at rest	22	2.2
Resting Diastolic BP > 110 mmHg or Systolic BP $>200 \mathrm{mmHg}$	57	5.7
Severe weakness in one or both legs	88	8.8
Resting heart rate exceeds 75% of predicted maxımum ${ }^{2}$	7	0.7
From ECG:		
Atrial fibrillation	46	4.6
Atrial flutter	1	0.1
Wolf-Parkinson-White or ventricular pre-excitation	0	00
Wide QRS $\geq 120 \mathrm{~m} \mathrm{sec}$	113	11.3
Idioventricular rhythm/complete heart block	2	02
Ventricular tachycardia	10	1.0
Acute pericarditis	0	00
Any reference to acute injury, ischemia, or MII	3	0.3
Resting heart rate $\leq 45 \mathrm{bpm}$	5	0.5
Resting heart rate $\geq 120 \mathrm{bpm}$	4	0.4
From rhythm strip: Ventricular arrhythmias: ≥ 3 premature ventricular contractions per 30 seconds	4	0.4
Number of exclusions met		
1	342	34.1
2	84	8.4
3 or more	16	1.6
Participants excluded		
Age group		
65.74	132	34.0
75-84	142	45.7
$85+$	168	55.5
Disability level		
Moderate	129	37.6
ADL difficulty: receives no help	201	42.1
ADL difficulty: receives help	112	61.9
Total	442	44.1
Did not attempt for other reason ${ }^{3}$	23	2.3
Number attempting test	537	53.7

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ Results are based on unweighted data.
${ }^{2} .75(200-\mathrm{age})$
${ }^{3}$ Did not meet exclusion criteria and responded "Yes" to "Do you see any reason why you could not perform this test?"

Table 10.3: Participants Meeting Specific Stopping Criteria for Seated Step Test ($\mathrm{N}=504)^{1}$

Stopping Criterion	Number	Percent
Symptoms:		
Chest pain	2	0.4
Lightheaded or dizzy	0	0.0
Short of breath	18	3.6
Leg pain	5	1.0
On examination: 110 mmHg or systolic BP $>200 \mathrm{mmHg}$		
Diastolic BP >13	2.6	
Diastolic BP < 60 mmHg or systolic BP $<90 \mathrm{mmHg}$	0	0.0
O2 saturation $\leq 80 \%$	0	0.0
Heart rate exceeds 75% of predicted maximum ${ }^{2}$	48	9.5
From ECG rhythm strip:		
Wide QRS $\geq 120 \mathrm{~m}$ sec	1	0.2
Ventricular arrhythmias: ≥ 3 premature ventricular contractions per 30 seconds	7	1.4
ST depression exceeding 1 mm measured 2 mm past end of QRS	0.2	
Borg perceived exertion scale ≥ 8	143	28.4
Participant says she cannot continue	210	41.7
Participant says she is too tired	2	0.4
Participant reports pain	18	3.6
Participant unable to lift leg	16	3.2
Other	18	3.6
Unknown	2	0.4
Total participants who stopped before test end	504	

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }_{2}^{1}$ Results are based on unweighted data.
$2.75(200-\mathrm{age})$.
${ }^{3}$ Percent based on number of participants who started the test ($\mathrm{N}=537$).

Table 10.4: Body Mass Index ${ }^{1,2}$

Body Mass Index ($\mathrm{kg} / \mathrm{m}^{2}$)	Total	Age Group			Disability Level		
		65-74	75.84	$85+$	Moderate ${ }^{3}$	ADL Difficulty	
						Recerves No Help	Recerves Help
Total	$(\mathrm{N}=924)$	$(\mathrm{N}=358)$	$(\mathrm{N}=287)$	($\mathrm{N}=279$)	($\mathrm{N}=333$)	$(\mathrm{N}=455)$	$(\mathrm{N}=136)$
Mean	28.9	31.1	27.6	26.1	27.9	29.6	29.4
Median	27.4	29.5	27.1	25.6	27.0	27.9	27.0
Percent underweight (≤ 21.44) ${ }^{4}$	11.7	5.9	15.3	19.1	12.7	10.0	15.5
Percent overweight ($\geq 31.58)^{5}$	28.5	39.1	23.1	12.5	24.0	31.1	31.8
Whites	($\mathrm{N}=667$)	$(\mathrm{N}=235)$	($\mathrm{N}=208$)	($\mathrm{N}=224$)	$(\mathrm{N}=221)$	($\mathrm{N}=352$)	$(\mathrm{N}=94)$
Mean	28.0	29.8	27.2	25.9	27.0	28.6	28.7
Median	26.9	28.8	27.0	25.4	26.5	27.7	26.3
Percent underweight (≤ 21.44) ${ }^{4}$	12.5	5.6	15.7	20.9	12.1	10.8	20.4
Percent overweight ($\geq 31.58)^{5}$	24.9	33.7	21.6	12.1	17.8	28.0	31.4
Blacks	($\mathrm{N}=254$)	$(\mathrm{N}=120)$	($\mathrm{N}=79$)	($\mathrm{N}=55$)	($\mathrm{N}=111$)	($\mathrm{N}=101$)	$(\mathrm{N}=42)$
Mean	31.3	33.8	28.8	26.9	29.7	33.1	30.9
Median	28.9	31.5	28.0	27.0	29.0	29.4	28.2
Percent underweight (≤ 21.44) ${ }^{4}$	9.9	6.6	13.9	12.0	141	7.2	4.6
Percent overweight $(\geq 31.58)^{5}$	37.5	49.2	27.5	14.0	35.8	41.2	32.6

(Women's Health and Aging Study, physical assessment, 1992-1995)

[^3]Table 10.5: Triceps Skinfold Thickness ${ }^{1,2}$

Triceps Skinfold Thickness (mm)	Total	Age Group			Disability Level		
		65-74	75-84	$85+$	Moderate ${ }^{3}$	ADL Difficulty	
						Receives No Help	$\begin{gathered} \text { Receives } \\ \text { Help } \\ \hline \end{gathered}$
Total	($\mathrm{N}=995$)	($\mathrm{N}=384$)	($\mathrm{N}=309$)	($\mathrm{N}=302$)	($\mathrm{N}=342$)	($\mathrm{N}=473$)	($\mathrm{N}=180$)
Mean	21.9	24.4	20.8	17.4	21.8	22.0	21.7
Median	20.7	24.0	19.8	17.4	21.0	20.4	19.9
Percent low $(\leq 16.3)^{4}$	25.6	14.6	29.9	45.9	24.4	24.5	31.3
Percent high $(\geq 30.8)^{5}$	15.2	22.1	11.6	5.2	14.3	14.9	17.9
Whites	($\mathrm{N}=709$)	($\mathrm{N}=248$)	($\mathrm{N}=219$)	($\mathrm{N}=242$)	$(\mathrm{N}=228)$	($\mathrm{N}=361$)	($\mathrm{N}=120$)
Mean	21.4	24.2	20.4	17.1	21.2	21.6	21.0
Median	20.2	23.3	20.2	17.3	20.8	20.2	19.6
Percent low (≤ 16.3) ${ }^{4}$	25.3	13.4	28.0	47.1	24.0	24.2	32.0
Percent high $(\geq 30.8)^{5}$	12.2	20.3	7.6	3.9	10.3	12.7	14.3
Blacks	($\mathrm{N}=281$)	($\mathrm{N}=131$)	($\mathrm{N}=90$)	($\mathrm{N}=60$)	($\mathrm{N}=113$)	($\mathrm{N}=109$)	($\mathrm{N}=59$)
Mean	23.1	25.0	21.9	18.4	23.1	23.3	23.0
Median	21.1	24.8	19.5	18.7	22.2	20.9	20.7
Percent low $(\leq 16.3){ }^{4}$	26.9	17.8	35.5	40.9	25.4	26.3	31.1
Percent high $(\geq 30.8)^{5}$	23.4	26.4	22.8	10.6	23.0	22.6	25.6

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ Skinfold thickness was usually computed by averaging the first two measures. A third measure was taken if the difference between the first two exceeded 2 mm . If the third measure was within 2 mm of just one of the earlier measures then the average of the two close measures was computed. Otherwise, the average of three measures was used. When a single measure was taken then it was used for the thickness.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4} 15$ th percentile or below, based on data from NHANES I for females age 70 to 74 years in Must A, Dallal GE, Dietz WH. (1991). Reference data for obesity: 85th and 95th percentiles of body mass index ($\mathrm{wt} / \mathrm{ht}^{2}$) and triceps skinfold thickness. Am J Clin Nutr 53:839-846.
${ }^{5} 85$ th percentile or above, based on previous reference.

Pulmonary Diseases and Conditions

Marcel E. Salive, Marco Pahor, Melvyn S. Tockman

Chronic obstructive pulmonary diseases (COPD) and related diseases are the fourth leading cause of death in the United States, and death rates for these conditions rose 36 percent from 1979 through 1992 (Kochanek and Hudson, 1995). Pneumonia and influenza are the sixth leading cause of death, with an increase of 13 percent during the same period. As a cause of disability, lung disease ranked fifth when 5,201 older adults in the Cardiovascular Health Study (CHS) were asked about the cause of any disability in 17 specific tasks, accounting for 6 percent of taskdisabilities (Ettinger et al., 1994). In the Framingham study cohort, persons diagnosed with COPD using spirometry were significantly more likely than unaffected persons to have disability in stair climbing, walking a mile, performing heavy home chores, and light housekeeping, but they did not differ in their ability to shop, carry bundles, or cook (Guccione et al., 1994); the results were adjusted for age, sex, and comorbidity. In another CHS analysis, self-reported lung disease was significantly associated with disability in each of four domains studied (which were similar to those used to screen the Women's Health and Aging Study [WHAS] population-see Chapter 1). However, lower forced expiratory volume in 1 second ($\mathrm{FEV}_{\mathrm{l}}$), a measure of obstructive disease, was associated with difficulty only in the mobility and higher functioning domains, not with self-care or upper extremity disability (Fried et al., 1994).

Conversely, physical disability in walking a half-mile, climbing stairs, or performing heavy housework or activities of daily living (ADLs) is a
possible risk factor for pneumonia-related mortality in older adults, after accounting for smoking and the effects of comorbidity (Salive et al., 1993). Taken together, the evidence presented above suggests that pulmonary conditions and physical disability can combine to trigger a spiraling decline in health among older adults that may result in death. This chapter examines the relation of pulmonary diseases and conditions, as well as physiologic measures of lung function, with age and disability in the WHAS.

About 10 percent of the women screened for the study reported a history of lung disease such as emphysema or chronic bronchitis (see Chapter 1, Table 1.3). In the total screened population, selfreported lung disease was related to disability: 17 percent of those who were eligible for the study reported such disease compared with only 7 percent among ineligible women who were not disabled.

Self-Reported Pulmonary Diseases

Although 16 percent of study participants reported a lifetime history of chronic bronchitis, only half that number reported that they currentlyhave the condition (Table ll.1). Nine percent of participants reported a physician diagnosis of emphysema. While 11 percent reported a lifetime history of asthma, only 8 percent reported currently having asthma. Thirteen percent reported a history of pneumonia within 5 years of the baseline interview; slightly over half of these cases required hospitalization.

In the total population, self-reported pulmonary diseases appear to decline in prevalence with age. This decline parallels reported smoking in the study group. Thirteen percent of the women enrolled in the study were current smokers, ranging from 18 percent among, the 65 to 74 year age group to only 6 percent in the women age 85 years and older (see Chapter 5, Table 5.3). Table 11.1 shows the prevalence of pulmonary conditions according to smoking status. For each age group and all disability levels, current and former smokers had substantially higher rates of chronic bronchitis and emphysema than never smokers. Overall, 14 percent of current smokers reported emphysema compared with only 3 percent of never smokers. Figure 11.1 shows the prevalence of chronic bronchitis and emphysema for never, former, and current smokers. There is a clear increase in the prevalence of chronic bronchitis across these smoking categories, with 19 percent of current smokers reporting current bronchitis. Emphysema was equally common in former and current smokers (14 percent). Asthma rates were unrelated to smoking status. Even after stratification by smoking status, chronic bronchitis and emphysema generally decrease in prevalence with age, probably as a result of high mortality rates in older people who have these conditions. Contrary to expectations, prevalence of chronic lung diseases did not increase according to disability level, possibly because of competing risks from other to-bacco-related illnesses and selective survival of the never smokers.

Pulmonary Symptoms

A series of 18 questions derived from the American Thoracic Society questionnaire (Ferris, 1978) was asked to determine symptoms of pulmonary disease (Table 11.2). Twenty percent of participants reported usually coughing in the morning, and 22 percent reported coughing during the rest of the day or at night. Overall, 30 percent of participants reported a history of a regular cough either upon arising or during the day or night, or both. The majority of these women

Figure 11.1: Pulmonary Disease and Cigarette Smoking Status ${ }^{1}$

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ Based on weighted data.
have had their cough for more than a year. Production of phlegm was also a common complaint, reported by 31 percent of women in the study, more commonly upon getting up in the morning. Again, most participants who produced phlegm reported that they had done so for more than a year. Cough and phlegm production were lower in the oldest age group, parallel to reported smoking.

While about two in five participants reported a wheezing sound from their chests during a common cold episode, only 16 percent reported wheezing apart from a cold, and less than half of
these persons (8 percent) had it most days or nights. Among those who had a wheezing sound without a cold, most reported a duration of more than a year. Wheezing symptoms apart from a cold and wheezing most days or nights were inversely associated with age and modestly higher in the group with more severe disability. One in five persons reported wheezing attacks resulting in shortness of breath, of whom 15 percent required treatment. In contrast to the reported prevalence of respiratory disease, respiratory symptom prevalence was often greater among those who reported disability.

Spirometric Measurements

Lung function was measured in the home examination according to a standard protocol based on the guidelines of the Epidemiology Standardization Project (Ferris, 1978) and the American Thoracic Society (1991). A PJ5 Spirometer with a pneumotachograph (Tamarac Co.) was connected to an IBM-compatible notebook computer (Zeos International, Ltd., Minneapolis, MN) using software developed and modified by the National Institute for Occupational Safety and Health (NIOSH). The nurses performing the examination were trained and certified, and their performance was closely monitored by NIOSH staff.

During at least five forced expirations, the nurse attempted to obtain three acceptable spirograms with at least two having similar results (within 5 percent) for FEV_{1} and forced vital capacity (FVC). The acceptability and reproducibility of the spirograms were indicated by the computer program, confirmed by the nurse, and ultimately determined at the NIOSH reading center. The largest FEV_{1} and the largest FVC on any of the acceptable tests were reported (American Thoracic Society, 1991). Sex-specific predicted values for FEV ${ }_{1}$ and FVC, adjusted for age and height, were computed from Knudson's equations (Knudson et al., 1983).

Exclusionary criteria for spirometry were the report of any of the following within the 6 weeks prior to the examination: chest or abdominal surgery ($n=8$), hospitalization for a heart attack ($n=4$) or other heart problem ($n=23$), or detached retina or eye surgery ($\mathrm{n}=20$). Three persons who had been hospitalized for a respiratory infection within 3 weeks prior to the examination and 84 additional persons were excluded at the discretion of the examiner, for an overall total of 142 persons excluded from the testing for medical or safety reasons.

Among those not excluded, nine participants refused to complete the spirometry examination, two were physically unable to cooperate, and two were unable to follow the instructions of the examiner. Seven persons were unable to complete the examination owing to equipment failure. Overall, 840 persons completed spirometry for a completion rate of 85 percent (Table 11.3). The completion rate was higher in the youngest age group and slightly lower among persons with more severe disability. Among those who completed testing, 77 percent had reproducible tests. The reproducibility rate was unrelated to age but was somewhat lower among women with more severe disability.

Spirometry examination results are presented in Table 11.4 only for persons with reproducible tests. The mean FEV, was 1.4 liters, slightly lower among the oldest women and those with the most severe disability. The forced expiratory volume in 6 seconds (FEV_{6}) approximates the total expiratory volume without depending on the duration of the test, as does the FVC. The mean FEV6 was 1.9 liters and also was lower with increasing age and disability. The FVC showed slightly higher results, particularly among the women with the best pulmonary function (95th percentile). The mean ratios of $\mathrm{FEV}_{1} / \mathrm{FEV}_{6}$ and $\mathrm{FEV}_{1} / \mathrm{FVC}$ showed little variation by age or disability level, although in the lower end of the distribution (5th and 25th percentiles) there is evidence of possible obstructive changes. The mean predicted volumes also have
little variation by age or disability level but a considerable range in their distributions.

Tables 11.5 and 11.6 present the data on physiologic impairment based on two methods of spirometry interpretation. Table 11.5 presents NIOSH interpretations, with normal values at or above the 5th percentile based on the predicted values of Knudson and colleagues (1983). This interpretation suggests that only a slight majority (52 percent) have normal pulmonary function as assessed by spirometry. Table 11.6 presents the results using a different method, based on the recommendations of the American Thoracic Society (1991). Distributions of the spirometry variables from a benchmark subgroup of the study population-composed of never smokers who did not report cough, sputum production, or wheezing ($\mathrm{n}=205$)-were used to develop normal values, considered to be at or above the fifth percentile. Using these criteria, only one-quarter of the population was found to have any abnormality (Table 11.6). Eighteen percent of participants had an obstructive pattern, with prevalence decreasing with increasing age and level of disability. Conversely, a restrictive pattern was highest among women age 85 years and older and women who received help with ADLs. Similar relationships of obstructive and restrictive lung disease with age and disability level were seen using the NIOSH interpretations (Table 11.5).

Summary

Much of the relation of self-reported lung diseases and symptoms to age and disability can be explained by age and smoking status. Spirometry examination was successfully completed in the home by about two-thirds of study participants. Successful pulmonary function testing was inversely related to disability but not to age. The results from this examination may be useful to further explore the relation of lung function to physical disability in this cohort of moderately to severely disabled older women.

Acknowledgments

The NIOSH laboratory is under the overall guidance of John Hankinson, Ph.D. Special thanks to Jeff Rushford and Betsy Viola of NIOSH for their contributions to spirometry training and data management.

References

American Thoracic Society. (1991). Lung function testing: Selection of reference values and interpretative strategies. Am Rev Respir Dis 144:12021218.

Ettinger WH, Fried LP, Harris T, Shemanski L, Schulz R, Robbins J for the CHS Collaborative Research Group (1994). Self-reported causes of physical disability in older people. The Cardiovascular Health Study. J Am Geriatr Soc 42:10351044.

Ferris BG Jr. (1978). Epidemiology Standardization Project (American Thoracic Society). Am Rev Respir Dis 118(Suppl.):1-120.

Fried LP, Ettinger WH Jr, Lind B, Newman AB, Gardin J for the CHS Collaborative Research Group. (1994). Physical disability in older adults: A physiological approach. J Clin Epidemiol 47:747-760.

Guccione AA, Felson DT, Anderson JJ, Anthony JM, Zhang Y, Wilson PWF, Kelly-Hayes M, et al. (1994). The effects of specific medical conditions on the functional limitations of elders in the Framingham study. Am J Public Health 84:351358.

Kochanek KD, Hudson BL. (1995). Advance report of final mortality statistics, 1992. Monthly Vital Stat Rep 43:1-76. Hyattsville, MD: National Center for Health Statistics.

Knudson RJ, Lebowitz MD, Holberg CJ, Burrows B. (1983). Changes in the normal maximal expiratory flow-volume curve with growth and aging. Am Rev Respir Dis 127:725-734.

Salive ME, Satterfield S, Ostfeld AM, Wallace RB, Havlik RJ. (1993). Disability and cognitive impairment are risk factors for pneumonia-related mortality in older adults. Public Health Rep 108:314-322.

Table 11.1: Percent Prevalence of Self-Reported Pulmonary Conditions ${ }^{1,2}$

	Total	Age Group			Disability Level		
		65-74	75-84	$85+$	Moderate ${ }^{3}$	ADL Difficulty	
						Receives No Help	Receives Help
Total	($\mathrm{N}=1002$)	($\mathrm{N}=388$)	$(\mathrm{N}=311$)	($\mathrm{N}=303$)	($\mathrm{N}=343$)	($\mathrm{N}=478$)	($\mathrm{N}=181$)
Chronic bronchitis Ever ${ }^{4}$ Current ${ }^{5}$	16.4 8.4	20.3 10.2	16.2 8.4	5.6 3.4	19.2 10.4	15.4 7.3	13.2 7.7
Emphysema ${ }^{4}$	8.5	11.3	7.3	4.0	10.8	7.8	5.8
Asthma Ever ${ }^{4}$ Current ${ }^{5}$	11.3 7.6	14.2 10.9	10.9 5.8	4.0 2.6	11.2 8.6	11.8 7.8	10.4 5.0
Have you been treated for pneumonia in the past 5 years? Yes	13.3	13.0	15.2	9.3	14.9	11.7	14.7
Did you require a stay in the hospital for treatment (of pneumonia)? Yes	7.1	6.9	8.0	5.5	8.6	6.0	7.3
Current and Former Cigarette Smokers ${ }^{6.7}$	$(\mathrm{N}=469)$	($\mathrm{N}=224$)	($\mathrm{N}=147$)	($\mathrm{N}=98$)	($\mathrm{N}=182$)	($\mathrm{N}=217$)	$(\mathrm{N}=70)$
Chronic bronchitis Ever ${ }^{4}$ Current ${ }^{5}$	22.5 12.2	26.4 14.6	21.3 11.2	7.9 4.0	26.1 14.6	20.2 10.1	20.2 12.3
Emphysema ${ }^{4}$	14.0	17.2	11.0	9.8	15.2	13.8	11.6
Asthma Ever ${ }^{4}$ Current ${ }^{5}$	11.2 8.2	13.7 11.0	9.0 6.0	6.5 3.2	12.3 9.8	11.0 7.5	8.9 6.5
Have you been treated for pneumonia in the past 5 years? Yes	16.1	17.3	16.1	9.8	16.7	13.6	22.2
Did you require a stay in the hospital for treatment (of pneumonia)? Yes	8.4	8.3	8.6	7.8	10.7	6.0	9.7
Never Smoked Cigarettes ${ }^{6.8}$	($\mathrm{N}=533$)	($\mathrm{N}=164$)	($\mathrm{N}=164$)	($\mathrm{N}=205$)	($\mathrm{N}=161$)	($\mathrm{N}=261$)	($\mathrm{N}=111$)
Chronic bronchitis Ever ${ }^{4}$ Current ${ }^{5}$	10.2 4.7	11.8 4.3	11.5 5.9	4.5 3.2	10.4 5.2	11.0 4.7	8.0 4.3
Emphysema ${ }^{4}$	3.0	3.0	4.0	1.0	5.4	2.2	1.5
Asthma Ever ${ }^{4}$ Current ${ }^{5}$	11.5 6.9	14.9 10.9	12.6 5.7	2.7 2.3	9.8	12.6 8.1	11.6 3.8
Have you been treated for pneumonia in the past 5 years? Yes	10.6	7.1	14.4	9.1	12.6	9.9	9.2
Did you require a stay in the hospital for treatment (of pneumonia)? Yes	5.8	4.8	7.5	4.3	6.0	5.9	5.5

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 3% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
4 "Yes" response to a question in the form "Has a doctor ever told you that you had . . . ?"
5 "Yes" response to "Do you still have it?"
${ }^{6}$ Which of the following best describes your current smoking status?
7 "Former smoker who quit more than 1 year ago"; "Former smoker who quit 1 year ago or less"; or "Current smoker" in response to the smoking status question.
${ }^{8}$ Response of "never smoked" to the smoking status question.

Table 11.2: Percent Prevalence of Self-Reported Pulmonary Symptoms ${ }^{1,2}$

Symptom	Total$(N=1002)$	Age Group			Disability Level		
		$\begin{gathered} 65.74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75.84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{array}{r} 85+ \\ (N=303) \\ \hline \end{array}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \\ & \hline \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & \text { (} \mathrm{N}=181) \\ & \hline \end{aligned}$
Do you usually cough . . . ? On getting up, first thing in the morning Yes	19.7	21.3	20.3	13.8	18.9	21.0	17.8
During the rest of the day or during the night Yes	21.6	22.5	23.3	14.5	22.0	197	26.2
Duration of cough ${ }^{4}$ Less than 1 month 1-12 months Over 12 months	$\begin{array}{r} 4.8 \\ 9.5 \\ 15.8 \end{array}$	5.2 10.7 16.0	4.5 9.2 17.1	$\begin{array}{r} 4.6 \\ 6.9 \\ 11.7 \end{array}$	4.3 8.1 18.2	$\begin{array}{r} 4.1 \\ 9.5 \\ 16.4 \end{array}$	$\begin{array}{r} 7.9 \\ 12.3 \\ 9.9 \end{array}$
Do you usually bring up phlegm . . ? On getting up, first thing in the morning Yes	23.6	24.3	24.1	20.3	22.6	22.7	28.3
During the rest of the day or during the night Yes	18.0	19.9	17.6	13.7	19.6	17.1	17.3
Duration of phlegm production ${ }^{\text {s }}$ Less than 1 month $1-12$ months Over 12 months	$\begin{array}{r} 4.4 \\ 8.4 \\ 18.2 \end{array}$	$\begin{array}{r} 5.7 \\ 8.5 \\ 18.0 \end{array}$	$\begin{array}{r} 3.0 \\ 8.4 \\ 19.7 \end{array}$	$\begin{array}{r} 4.3 \\ 8.3 \\ 14.5 \end{array}$	$\begin{array}{r} 3.9 \\ 8.8 \\ 18.5 \end{array}$	$\begin{array}{r} 3.7 \\ 6.9 \\ 18.7 \end{array}$	$\begin{array}{r} 7.3 \\ 11.8 \\ 16.0 \end{array}$
Does your chest ever sound wheezy or whistling ... ? When you have a cold Yes	42.6	51.7	40.1	22.5	46.2	42.0	36.7
Apart from when you have a cold Yes	16.4	21.3	14.5	6.7	16.7	14.6	20.7
Most days or nights ${ }^{5}$ Yes	7.6	10.0	6.5	3.5	8.0	5.9	11.4
Duration of wheezing ${ }^{4.5}$ Less than 1 month 1-12 months Over 12 months	$\begin{aligned} & 2.0 \\ & 5.2 \\ & 9.0 \end{aligned}$	$\begin{array}{r} 3.3 \\ 6.6 \\ 11.1 \end{array}$	$\begin{aligned} & 0.9 \\ & 4.5 \\ & 9.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.7 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 5.1 \\ & 8.7 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 5.2 \\ & 8.0 \end{aligned}$	$\begin{array}{r} 3.0 \\ 5.1 \\ 12.6 \end{array}$
Attack of wheezing resulting in shortness of breath ${ }^{6}$ One episode only Two or more episodes	$\begin{array}{r} 5.4 \\ 14.6 \end{array}$	$\begin{array}{r} 6.2 \\ 19.0 \end{array}$	$\begin{array}{r} 4.9 \\ 13.8 \end{array}$	$\begin{aligned} & 4.2 \\ & 4.1 \end{aligned}$	$\begin{array}{r} 6.2 \\ 12.6 \end{array}$	$\begin{array}{r} 4.6 \\ 14.4 \end{array}$	$\begin{array}{r} 5.8 \\ 19.2 \end{array}$
Have you ever required medicine or treatment for the(se) attack(s)? Yes	15.2	19.5	14.2	5.7	15.7	15.0	14.9

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 3% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ The question is in the form "Have you had this . . . for . . ?"
${ }^{5}$ Asked of participants who reported that the chest sounded wheezy or whistling apart from when they had a cold.
${ }^{6}$ Have you ever had an attack of wheezing that has made you feel short of breath? Have you had two or more such episodes?

Table 11.3 Spirometry Examination Results ${ }^{1}$

Test Result	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ \langle\mathrm{~N}=311\rangle \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{2} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=181) \end{aligned}$
Attempting spirometry Number Percent	$\begin{gathered} 840 \\ 84.7 \end{gathered}$	$\begin{aligned} & 338 \\ & 87.6 \end{aligned}$	$\begin{gathered} 255 \\ 82.2 \end{gathered}$	$\begin{gathered} 247 \\ 82.9 \end{gathered}$	$\begin{gathered} 292 \\ 85.2 \end{gathered}$	$\begin{gathered} 406 \\ 85.3 \end{gathered}$	$\begin{aligned} & 142 \\ & 82.0 \end{aligned}$
If attempted: Acceptable reproducibility ${ }^{3}$ Number Percent	639 77.2	260 76.8	$\begin{aligned} & 195 \\ & 77.9 \\ & \hline \end{aligned}$	$\begin{gathered} 184 \\ 76.5 \end{gathered}$	$\begin{gathered} 225 \\ 78.7 \end{gathered}$	$\begin{gathered} 319 \\ 79.2 \end{gathered}$	$\begin{aligned} & 95 \\ & 68.1 \\ & \hline \end{aligned}$

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ Descriptive statistics are based on weighted data.
${ }^{2}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{3}$ Three acceptable trials, free of coughs, early termination or extrapolated volume.

Table 11.4: Spirometry Results ${ }^{1,2}$

Test Result	Total$(\mathrm{N}=639)$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=260) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=195) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=184) \\ \hline \end{gathered}$	Moderate ${ }^{3}$$(\mathrm{N}=225)$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=319$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=95) \end{aligned}$
Forced expiratory volume in the first second (FEV,) (liters)							
Mean	1.4 0.7	1.5 0.8	1.4 0.7	1.2 0.7	1.5 0.7	1.5 0.7	1.4
5 th percentile	0.7 1.1	0.8 1.1	1.7 0.7	0.7 1.0	0.7 1.1	0.7 1.1	0.7
25th percentile 50 th percentile	1.1 1.4	1.1 1.6	1.1 1.4	1.0	1.1 1.4	1.1 1.4	1.0
50th percentile 75 th percentile	1.4	1.6	1.4	1.2	1.4	1.4	1.3
75 th percentile 95 th percentile	1.7	1.9	1.7	1.5	1.8	1.8	1.5
95th percentile	2.2	2.3	2.1	1.8	2.2	2.2	2.1
Forced expiratory volume in 6 seconds (FEV_{6}) (liters)							
5 th percentile	1.0	1.2	1.1	0.8	1.1	1.1	0.9
25 th percentile	1.5	1.7	1.5	1.3	1.6	1.5	1.3
50th percentile	1.9	2.1	1.9	1.6	1.9	1.9	1.6
75th percentile	2.2	2.4	2.2	1.9	2.3	2.3	2.0
95 th percentile	2.7	3.0	2.7	2.4	2.8	2.7	2.6
Forced vital capacity (FVC) (liters)							
5 th percentile	1.1	1.3	1.1	0.8	1.1	1.1	0.9
25th percentile	1.5	1.7	1.6	1.4	1.6	1.6	1.3
50th percentile	1.9	2.1	1.9	1.7	2.0	2.0	1.6
75 th percentile	2.3	2.5	2.3	2.0	2.4	2.4	2.1
95 th percentile	3.0	3.3	2.9	2.5	3.0	3.0	2.8
FEV $/$ /FEV 6 (percent)							
Mean 5 th percentile	75.7 55.6	74.5 53.0	75.4 56.5	79.8 60.5	74.9 52.9	75.1 55.8	79.6
5 th percentile 25 th percentile	55.6 70.6	53.0 70.7	56.5 69.5	60.5 71.4	52.9 69.2	55.8 70.2	62.7 73.6
50th percentile	76.2	76.3	75.6	76.4	75.2	76.2	78.7
75th percentile	81.4	80.9	81.5	83.1	80.6	80.9	87.3
95 th percentile	97.5	89.6	100.0	100.0	95.0	97.3	100.0
FEV $/$ /FVC (percent)							
Mean	72.9	71.7	72.8	76.8	71.5	72.4	78.1
5 th percentile	50.2	49.0	48.8	56.0	48.1	51.2	60.9
25th percentile	66.6	65.4	65.6	68.9	65.1	66.5	70.7
50th percentile	73.4	73.1	72.4	74.6	72.3	73.1	77.7
75th percentile	80.3	79.9	80.5	82.9	79.9	79.5	87.1
95 th percentile	97.1	88.8	99.3	100.0	94.9	97.1	99.3
Mean	78.3	76.7	79.2	81.3	76.9	80.2	75.6
5 th percentile	41.9	40.7	40.0	45.4	43.1	40.9	42.1
25 th percentile	62.6	61.4	63.6	66.2	60.2	65.2	61.6
50th percentile	80.7	79.4	80.0	83.3	78.9	83.6	75.5
75th percentile	95.6	92.1	97.4	101.0	93.6	98.3	91.1
95 th percentile	116.4	112.1	114.5	121.5	114.2	116.9	113.3
Percent of predicted FVC ${ }^{5}$							
Mean	83.2	84.0	83.5	79.8	83.6	85.2	75.3
5 th percentile	47.6	50.9	48.8	44.2	50.5	50.9	40.2
25 th percentile	69.4	71.7	68.1	68.2	70.3	70.8	61.3
50 th percentile	82.0	82.9	82.3	80.1	82.0	84.2	73.7
75 th percentile	99.0	98.9	100.4	96.4	99.1	100.4	90.1
95th percentile	120.1	119.6	119.1	121.5	120.5	120.4	113.8

[^4]Table 11.5: Spirometry Interpretation by National Institute for Occupational Safety and Health (NIOSH) (Percent) ${ }^{1,2}$

Test Result ${ }^{3}$	Total$(N=639)$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=260) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=195) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=184) \end{gathered}$	$\begin{aligned} & \text { Moderate }^{4} \\ & (\mathrm{~N}=225) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=319$)	Receives Help $(\mathrm{N}=95)$
Normal pattern	51.6	54.4	46.3	57.3	48.6	55.0	47.6
Obstructive pattern Mild Moderate or severe	11.5 7.2	12.7 7.5	13.0 7.6	4.1 5.1	15.1 8.8	10.0 7.7	8.0 1.3
Restrictive pattern Mild Moderate or severe	7.7 13.2	4.1 11.6	11.6 12.4	8.6 20.0	6.1 11.7	9.0 8.7	7.7 31.7
Obstructive and restrictive Mild Mild obstructive/moderate to	0.4	0.4	0.6	0.2	1.1	0.1	0.0
severe restrictive Mild restrictive/moderate to	2.4	1.9	3.6	0.8	2.0	3.1	1.1
severe obstructive	2.2	2.7	1.1	3.4	1.5	2.5	2.6
Moderate to severe	3.8	4.8	3.9	0.6	5.2	4.0	0.0

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Categories may not add up to 100% due to rounding.
${ }^{4}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).

Table 11.6: Spirometry Interpretation for All Participants Based on Benchmark Group (Percent) ${ }^{1,2,3}$

Interpretation ${ }^{4}$	Total$(\mathrm{N}=639)$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=260) \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=195) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=184) \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{5} \\ & (\mathrm{~N}=225) \end{aligned}$	ADL Difficulty	
						Receives No Help $(N=319)$	Receives Help $(\mathrm{N}=95)$
Normal pattern	75.2	72.8	76.7	78.9	71.6	76.6	79.6
Obstructive pattern ${ }^{6}$	17.6	21.1	16.8	9.0	21.7	17.9	6.3
Restrictive pattern ${ }^{7}$	7.2	6.2	6.6	12.1	6.7	5.5	14.1

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ The benchmark group consists of participants with no self-report of cough, phlegm, chest wheezing or whistling apart from a cold, or history of smoking cigarettes.
${ }^{4}$ Categories may not add up to 100% due to rounding.
${ }^{5}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{6}$ Percent predicted FEV_{1} /percent predicted FVC less than 5th percentile of the benchmark group.
7 Percent predicted FEV ${ }_{1}$ /percent predicted FVC at least 5 th percentile of the benchmark group, and percent predicted FVC less than 5th percentile of the benchmark group.

12

Musculoskeletal Disease

Marc C. Hochberg, M. Chiara Corti, Luigi Ferrucci, Jack M. Guralnik

Arthritis and related musculoskeletal diseases are the most common chronic conditions among older adults in the United States (Lawrence et al., 1989; Scott and Hochberg, 1993). These diseases are strongly associated with the presence of functional limitations, disability, and reduced quality of life in this segment of the population (Badley, 1995; Ettinger et al., 1994; Guccione et al., 1994; Hughes et al., 1993; Jette et al., 1990; Stewart et al., 1989; Verbrugge et al., 1991)

This chapter describes the prevalence of common arthritic and other musculoskeletal diseases and the symptoms of these conditions, as reported by participants in the Women's Health and Aging Study (WHAS). The prevalence of physical signs of arthritis noted on an examination performed by a trained nurse and the results of lower extremity muscle strength testing are also described. Finally, prevalence estimates are examined in relation to both age and the level of disability.

Self-Reported Musculoskeletal Conditions

Table 12.1 reports the prevalence of arthritis, defined as a positive response to the question "Has a doctor ever told you that you had arthritis?" Three-quarters of disabled women age 65 years and older reported being diagnosed with arthritis by a doctor; prevalence did not vary with age. Prevalence of physician-diagnosed arthritis was, however, slightly more common in
women with difficulty in activities of daily living (ADLs) than in moderately disabled women.

As expected, the most commonly reported type of arthritis was osteoarthritis; however, the majority of women with self-reported physiciandiagnosed arthritis did not know what type of arthritis they had. About 12 percent of these women reported rheumatoid arthritis; the prevalence of definite rheumatoid arthritis in women age 65 to 79 years in the United States was estimated as 5 percent (Lawrence et al., 1989). Reported rheumatoid arthritis was most common in women who received help in performing ADLs and least common in women with moderate disability.

Table 12.1 also gives information on current treatment for arthritis. The denominator for the percentages in this table is the total number of women in each age or disability category, not just those who reported a physician diagnosis of arthritis. Reported current treatment for arthritis was slightly higher among women with ADL difficulty than in those with moderate disability. Overall, less than 9 percent of women reported having surgery for treatment of arthritis; the majority of these women had surgery on their knees. Joint surgery in general, and hip and knee surgery specifically, were more commonly reported by women having difficulty with ADLs than by women with moderate disability but no ADL difficulty.

The prevalence of other osteoarticular conditions is presented in Table 12.2. Sixteen percent
of women reported having been told by a doctor they had osteoporosis; however, only one-third of these women reported current treatment for osteoporosis. The prevalence of reported osteoporosis was highest among women age 75 to 84 years, and the proportion of those with osteoporosis reporting current treatment was lowest in those age 85 years and older.

Table 12.2 also shows the prevalence of reported fractures. Six percent of the women reported hip fracture. The prevalence increased with age, with 15 percent of women age 85 years and older reporting a hip fracture. Women with ADL difficulty, especially those who received help, were more likely to report having had a hip fracture than those with only moderate disability. Fractures of other bones, particularly the wrist or arm, were very common in these women. Overall, one-third of women reported one or more fractures; the prevalence in women age 75 years and older was approximately 40 percent. Women with ADL difficulty were more likely to report a prior fracture than women with only moderate disability. About one-fifth of women reported a history of disc disease or spinal stenosis. Of these women, only 5 percent reported surgical treatment. The prevalence of reported disc disease or spinal stenosis was greater in women with ADL difficulty than in those with only moderate disability.

Self-Reported Musculoskeletall Symptoms

The prevalence of reported pain ". . . on most days for at least one month . . ." in the hands or wrists, hips, knees, feet, and lower back during the past year by age and level of disability is shown in Table 12.3. The most common site of pain was the knees, followed by the lower back, feet, hands or wrists, and hips. Over one-half of women had pain or stiffness in the hands or wrists and in the knees in the past month, and about 40 percent of women had pain in the hips and in the feet during the previous month. The prevalence of reported pain at each site, during both the past year and the month before the in-
terview, was lower in women age 85 years and older than in younger women and higher among women who reported difficulty with ADLs compared with those with only moderate disability.

The level of severity of self-reported pain in the hands or wrists, feet, and back is given in Table 12.4. These data come from participant report of pain using visual analog scales that range from 0 to 10 , representing mild ($0-3$), moderate (4-6), or severe pain (7-10). The scales were presented only to women who stated that they had pain during the month before the interview. Of those with pain, the majority, independent of age and level of disability, had moderate or severe pain. The level of severity of self-reported pain in the knees or hips is given in Table 12.5. These data are based on answers to five pain questions taken from the Western Ontario McMaster Osteoarthritis Index (Bellamy et al., 1988); level of pain is categorized as mild (0-3), moderate (4-6), or severe $(7-10)$ in those who stated that they had pain during both the past year and the month before the interview in their hips and/or their knees. The majority of women who reported current pain in their hips and/or knees had moderate or severe pain when walking on a flat surface, going up and down stairs, and standing upright; however, less than half had moderate or severe pain when sitting or lying down or in bed at night. The proportion of those with current pain who reported moderate or severe pain did not appear to vary with age or level of disability. Of note, however, was the higher proportion of women in the oldest age group and in the group that required help performing ADLs who reported that they did not stand upright, walk on a flat surface, or go up and down stairs. Avoidance of or inability to perform these tasks may lead to an underestimate of the prevalence of and level of severity of complaints of large joint arthritis associated with these weight-bearing activities.

Morning stiffness and swelling with tenderness of the joints were reported less often than joint pain at all sites (Table 12.3). The prevalence of morning stiffness was higher than that of swelling in both the hands or wrists and knees, but not in the feet. This may be attribut-
able to some confusion between dependent edema and joint swelling by some of these women. Both age-specific and disability levelspecific patterns of prevalence of morning stiffness and swelling were similar to those for reported pain.

Signs of Arthritis on Physical Examination

Trained nurses performed a standardized examination of the participants' peripheral joints. The wrists and metacarpophalangeal and proximal interphalangeal joints of the hands were examined for tenderness on palpation and pain on motion, soft tissue swelling, and limited range of motion; the distal interphalangeal joints of the hands were examined for tenderness on palpation and pain on motion, bony enlargement, and limited range of motion; the hips were examined for pain on motion; the knees were examined for tenderness on palpation and pain on motion, bony enlargement, crepitus, and angular (varus or valgus) deformity; the feet were examined for the presence of bunions and hammer toes; and functional shoulder rotation was assessed.

Table 12.6 presents the prevalence of abnormalities found on physical examination. The most commonly involved joint group was the knees. Over 80 percent of women had patellofemoral crepitus on flexion and extension of their knees; this sign is the most common physical finding in patients with osteoarthritis of the knee and is one of the clinical features utilized in classifying cases of knee osteoarthritis (Altman et al., 1986). Approximately 35 percent of women had tenderness or pain on motion, 42 percent had bony enlargement of the knees, and 17 percent had either a valgus or varus deformity of the knee. These findings were more common in women with ADL difficulty, especially those needing help with ADLs, than in women with moderate disability. The prevalence of both bony enlargement and angular deformities increased with age in these women.

Abnormalities were found in the feet and hands or wrists in a majority of women. About 70 percent had bunions and 50 percent had hammer toes. The prevalence of both bunions and hammer toes increased with age; hammer toes were slightly more common in women with ADL difficulty than in women with moderate disability. Tenderness on palpation or pain on motion and limitation of joint range of motion in the hands or wrists were present in the majority of women and were slightly more common in women with ADL difficulty than in women with moderate disability. Swelling in the joints of the hands or wrists was present in about one-quarter of women and was found in a higher proportion of women with ADL difficulty than in women with moderate disability.

Almost two-thirds of women were fully capable of functional shoulder rotation; the proportion able to perform this maneuver, however, declined with increasing age and was markedly lower in women who received help with ADLs than in women with only moderate disability. More detailed results of the shoulder rotation assessment are presented in Chapter 4, Table 4.9. Pain on motion of the hips was present in only one-quarter of women and was not related to either age or level of disability.

Lower Extremity Strength

Knee extensor (quadriceps) muscle strength and hip flexor (iliopsoas) muscle strength were determined using a Nicholas Manual Muscle Tester (Model \# BK-7454, Fred Sammons, Inc., Burr Ridge, IL), a hand-held dynamometer that measures the peak force required to break an isometric contraction as the examiner applies force against the subject. Tests were conducted with the participant seated comfortably in a hard chair. The dynamometer was placed a few inches above the right ankle between the medial and lateral malleolus for the knee extension test and immediately proximal to the femoral condyles at the distal thigh for the hip flexion test. Partici-
pants were instructed to push against the dynamometer as hard as they could, and the examiner then pushed hard enough to break the contraction.

Results of functional tests of lower extremity muscle strength are shown in Table 12.7; results of tests of upper extremity muscle strength are given in Chapter 4, Tables 4.6 through 4.8. Over three-quarters of these elderly, disabled women were able to complete tests of hip flexor and knee extensor muscle strength; however, the proportion able to perform the tests declined with increasing age and was lower among those with ADL difficulty, particularly among those receiving help with ADLs, than among those with moderate disability.

Among those who completed testing, the mean and median values for both hip flexor strength and knee extensor strength declined with increasing age and were higher among those with moderate disability than women who received help with ADLs. These data support the validity of functional testing performed in the home by trained nurses on older, disabled women.

Summary

As expected, arthritis was the most common condition reported by women in the WHAS. It affected multiple joints and frequently caused knee pain which was most severe going up and down steps. Physical examination confirmed the frequent knee involvement and also clarified the other joints affected. Most often arthritis was managed with medications, although a small proportion had surgical treatment. Symptoms and examination findings in older women with disability provide insight into the relationship of musculoskeletal disease with severity of disability.

References

Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, Christy W, et al. (1986). Development of criteria for the classification and reporting of osteoarthritis. Arthritis Rheum 29:10391049.

Badley EM. (1995). The effect of osteoarthritis on disability and health care use in Canada. J Rheumatol 22:19-22.

Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. (1988). Validation study of WOMAC: A health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15:1833-1840.

Ettinger WJ, Fried LP, Harris T, Shemanski L, Schulz R, Robbins J for the CHS Collaborative Research Group. (1994). Self-reported causes of physical disability in older people: The Cardiovascular Health Study. J Am Geriatr Soc 42:1035-1044.

Guccione AA, Felson DT, Anderson JJ, Anthony JM, Zhang Y, Wilson PWF, Kelly-Hayes M, et al. (1994). The effects of specific medical conditions on the functional limitations of elders in the Framingham study. Am J Public Health 84:351358.

Hughes SL, Edelman P, Singer RH, Chang RW. (1993). Joint impairments and self reported disability in elderly persons. J Gerontol Soc Sci 45:S584-S592.

Jette AM, Branch LG, Berlin J. (1990). Musculoskeletal impairments and physical disablement among the aged. J Gerontol Med Sci 45:M203M208.

Lawrence RC, Hochberg MC, Kelsey JL, McDuffie FC, Medsger TA Jr, Felts WR, Shulman LE. (1989). The prevalence of selected arthritic and musculoskeletal diseases in the United States. J Rheumatol 16:427-441.

Scott JC, Hochberg MC. (1993). Arthritis and other musculoskeletal diseases. In: Brownson RC, Remington PL, Davis JR, eds. Chronic Disease Epidemiology and Control. Washington, DC: American Public Health Association.

Stewart AL, Greenfield S, Hays RD, Wells K, Rogers WH, Berry SD, McGlynn EA, et al. (1989). Functional status and well-being of patients with chronic conditions: Results from the Medical Outcomes Study. JAMA 262:907-913.

Verbrugge LM, Lepkowski JM, Konkol LL. (1991). Levels of disability among U.S. adults with arthritis. J Gerontol Soc Sci 46:S71-S83.

Table 12.1: Percent Prevalence of Self-Reported Arthritis and Surgical Treatment for Arthritis ${ }^{1,2}$

Condition and Treatment	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	Receives Help $(N=181)$
Self-report of arthritis ${ }^{4}$ Has a doctor ever told you that you had arthritis? ${ }^{5}$	76.1	75.4	77.4	74.6	70.0	80.4	76.9
Yes	75.1	74.7	76.5	72.6	68.5	79.8	75.5
Are you currently being treated or taking medication for arthritis? Yes	42.2	42.5	44.7	34.6	37.7	44.5	45.3
Which type of arthritis do you have? ${ }^{6}$							
Rheumatoid arthritis	11.6	10.1	14.4	8.7	10.2	11.3	15.5
Osteoarthritis or degenerative arthritis	21.8	26.4	19.0	16.1	17.7	24.6	22.7
Some other type	1.9	1.4	2.8	0.9	2.3	1.8	1.3
Don't know	40.8	37.5	41.3	48.9	39.8	42.7	37.4
Any surgery for arthritis ${ }^{7}$	8.4	8.4	9.1	6.6	3.5	11.2	10.8
Hip surgery ${ }^{8}$	2.2	1.9	2.9	1.3	0.4	3.3	3.1
Knee surgery ${ }^{9}$	5.0	5.5	4.7	4.1	2.2	6.8	5.8

(Women's Health and Aging Study, screening and baseline interviews, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
4 "Yes" response to either the question about doctor's diagnosis of arthritis or the question about treatment or medication for arthritis.
${ }^{5}$ The question was asked in the screener interview and the presence of the condition was confirmed in the baseline interview.
${ }^{6}$ Categories may not add up to percent reporting arthritis due to rounding.
7 "Yes" response to "Have you ever had any operations for treatment of your arthritis?"
8 "Yes" response to either "Was your right hip operated on?" or "Was your left hip operated on?"
9 "Yes" response to either "Was your right knee operated on?" or "Was your left knee operated on?"

Table 12.2: Percent Prevalence of Other Self-Reported Osteoarticular Conditions ${ }^{1,2}$

Condition and Treatment	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \\ \hline \end{gathered}$	Moderate ${ }^{3}$$(N=343)$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	Receives Help $(N=181)$
Osteoporosis or thinning of the bones ${ }^{4}$	16.0	14.1	19.4	12.3	16.9	16.0	14.2
Are you currently being treated for osteoporosis? Yes	5.6	5.9	6.6	2.1	4.5	6.7	5.1
Bone fractures Hip^{5}	6.1	3.2	6.3	14.5	3.9	6.9	8.7
Hospitalized during past year for hip fracture ${ }^{6}$	0.4	0.3	0.7	0.3	0.0	0.0	2.6
Compression fracture or collapsed or crushed vertebrae ${ }^{7}$	4.9	2.9	7.0	5.0	3.0	5.6	6.8
Wrist/arm (since age 50) ${ }^{8}$	13.1	10.4	14.6	16.8	12.1	15.0	10.0
Other bones (since age 50) ${ }^{9}$	19.4	17.4	22.4	17.3	16.6	22.1	17.8
Degenerated or herniated disc or spinal stenosis ${ }^{10}$	17.8	19.0	19.3	10.1	12.1	22.9	15.1
Surgery for treatment of degenerated disc or spinal stenosis ${ }^{11}$	0.8	0.8	1.2	0.0	0.3	1.5	0.0

(Women's Health and Aging Study, screening and baseline interviews, 1992-1995)
${ }^{1}$ All variables have less than 5% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ The question is in the form "Has a doctor ever told you that you had . . . ?"
5 "Yes" response to "Has a doctor ever told you that you had a broken or fractured hip?" from the screener interview. The presence of the condition was confirmed in the baseline interview.
6 "Yes" response to "Were you hospitalized for treatment of your broken hip?" and date of most recent hip fracture given in response to "When were you admitted to the hospital?" no more than 365 days prior to date of baseline interview.
7 "Yes" response to "Has a doctor ever X-rayed you and told you that you had a compression fracture or collapsed or crushed vertebrae?"
8 "Yes" response to "Since the age of 50 , has a doctor ever told you that you had broken or fractured your wrist or arm?"
9 "Yes" response to "Since the age of 50, has a doctor ever told you that you had broken or fractured any other bones?"
10 "Yes" response to either "Has a doctor ever told you that you had a degenerated, slipped or herniated disc or sciatica?" or "Has a doctor ever told you that you had spinal stenosis?"
" "Yes" response to either "Did you have surgery for treatment of your degenerated, slipped, or herniated disc or sciatica?" or "Did you have surgery for treatment of spinal stenosis?"

Table 12.3: Percent Prevalence of Osteoarticular Symptoms ${ }^{1,2}$

Symptom	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	Receives Help ($\mathrm{N}=181$)
Hands or wrists							
Pain, aching, or discomfort ${ }^{4}$	33.0	36.6	31.7	26.2	27.5	33.7	42.7
Swelling with tenderness ${ }^{5}$	16.0	19.6	15.0	8.4	13.8	13.9	26.7
Morning stiffness ${ }^{6}$	27.7	31.2	26.9	19.7	20.8	27.4	42.8
Pain or stiffness occurred in the past month ${ }^{7}$	56.9	60.4	56.7	47.6	50.2	61.5	58.3
Hips							
Pain, aching, or discomfort ${ }^{4}$	27.7	31.8	25.0	22.9	20.6	33.1	27.1
Morning stiffness ${ }^{6}$	20.9	23.9	20.1	13.8	13.9	25.9	21.2
Pain or stiffness occurred in the past month ${ }^{8}$	38.6	41.8	38.1	30.4	30.7	46.7	32.4
Knees							
Pain, aching, or discomfort ${ }^{4}$	45.9	52.1	43.3	34.7	36.3	51.4	50.4
Swelling with tenderness ${ }^{5}$	23.4	28.8	19.9	17.3	16.0	25.5	33.2
Morning stiffness ${ }^{6}$	34.5	41.1	32.6	20.5	23.5	39.8	42.7
Pain or stiffness occurred in the past month ${ }^{8}$	55.4	59.7	54.7	45.0	45.9	61.3	58.8
Feet							
Pain, aching, or discomfort ${ }^{4}$	34.1	35.9	35.8	24.2	27.9	36.8	39.5
Swelling with tenderness ${ }^{5}$	21.9	23.0	22.7	16.8	18.6	21.0	31.5
Morning stiffness ${ }^{6}$	21.0	24.4	20.7	11.9	14.0	23.4	28.9
Pain or stiffness occurred in the past month ${ }^{8}$	43.2	44.5	45.7	32.9	38.2	46.2	45.4
Lower back Pain ${ }^{4}$	42.2	45.8	43.4	28.6	33.2	49.0	42.1

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ "Yes" response to "During the past year, have you had . . . in your . . . on most days for at least one month?"
5 "Yes" response to "Have you ever had any swelling with aching or tenderness in your . . on most days for at least six weeks?"
6 "Yes" response to "Have you ever had stiffness in your . . . when first getting up in the morning on most days for at least six weeks?"
7 "Yes" response to either "Have you had (this/any) pain in your hands or wrists during the past month?" or "Have you had (this/any) stiffness in your hands or wrists in the last month?"
8 "Yes" response to either "Have you had (this/any) pain in your . . . during the past month?" or "Has stiffness in your . . . occurred in the past month?"

Table 12.4: Presence and Severity of Pain in Hands or Wrists, Feet, and Lower Back During the Past Month (Percent) ${ }^{1,2}$

Symptom ${ }^{3}$	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75.84 \\ (N=311) \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \end{gathered}$	Moderate ${ }^{4}$$(N=343)$	ADL Difficulty	
						Receives No Help $(N=478)$	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (N=181) \\ & \hline \end{aligned}$
Hands or wrists ${ }^{5,6}$							
No pain reported	49.2	46.8	48.6	58.0	55.7	44.9	48.0
Mild pain (0-3)	14.0	13.4	15.3	12.3	12.2	18.1	6.3
Moderate pain (4-6)	21.9	24.4	20.0	19.6	18.6	23.1	25.3
Severe pain (7-10)	14.9	15.4	16.1	10.1	13.5	14.0	20.3
Feet ${ }^{5,6}$							
No pain reported	58.2	56.9	56.0	67.9	63.6	55.2	55.5
Mild pain (0-3)	10.4	6.9	15.3	7.7	7.7	13.2	8.2
Moderate pain (4-6)	13.9	15.6	12.9	11.8	14.0	14.0	13.6
Severe pain (7-10)	17.4	20.6	15.7	12.6	14.6	17.6	22.8
Lower back ${ }^{7.6}$							
No pain reported	57.8	54.2	56.6	71.4	66.8	51.0	57.9
Mild pain (0-3)	5.3	3.8	7.3	4.8	4.7	6.1	4.4
Moderate pain (4-6)	16.2	19.3	13.5	14.2	15.3	16.8	16.4
Severe pain (7-10)	20.7	22.7	22.6	9.7	13.2	26.1	21.2

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Categories for each item may not add up to 100% due to rounding.
${ }^{4}$ No ADL difficulty; disabled in two or more domans (see Chapter 1).
${ }^{5}$ Have you had (this/any) pain in your . . . (during the past month)?
${ }^{6}$ Respondents who answered "Yes" to the question about pain were then asked "Please rate the average pain in your ... during the past month by giving me a number from 0 to 10 , where 0 is no pain and 10 is severe or excruciating pain, as bad as you can imagine."
${ }^{7}$ During the past year, have you had pain in your lower back on most days for at least one month?

Table 12.5: Presence and Severity of Pain in Knees or Hips During the Past Month (Percent) ${ }^{1,2}$

Symptom	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	Receives Help $(N=181)$
Pain in knees or hips during the past month ${ }^{4}$	65.5	69.5	64.7	56.2	55.8	72.7	65.8
Severity of pain reported during activities: ${ }^{5}$ Walking on a flat surface ${ }^{6}$ Doesn't do Mild pain (0-3) Moderate pain (4-6) Severe pain (7-10)							
	0.4	0.0	0.5	1.0	0.0	0.0	2.2
	20.1	19.5	20.9	19.6	18.9	22.5	15.9
	22.3	24.0	22.0	18.1	21.8	24.5	17.2
	22.5	26.0	21.0	16.5	15.0	25.6	29.9
Going up or down stairs ${ }^{6}$ Doesn't do	4.1	2.6	4.6	7.4	1.1	4.5	9.8
Mild pain (0-3)	16.5	16.2	16.2	18.5	15.7	17.9	14.5
Moderate pain (4-6)	17.4	16.9	20.1	11.6	19.1	18.5	10.7
Severe pain (7-10)	26.8	33.6	23.2	16.5	19.8	31.4	29.2
In bed at night 6Mild pain (0-3)Moderate pain (4-6)Severe pain (7-10)							
	33.8	31.5	36.5	33.1	29.7	38.3	29.7
	16.2	17.6	15.3	14.7	13.6	17.9	17.1
	15.4	20.4	12.8	7.3	12.4	16.4	18.6
Sitting or lying down ${ }^{6}$							
Mild pain (0-3)	37.3	36.1	39.2	35.7	33.1	42.9	30.5
Moderate pain (4-6)	16.7	20.7	13.1	14.6	14.2	18.3	17.4
Severe pain (7-10)	11.3	12.4	12.4	5.1	8.1	11.4	17.8
Standing upright ${ }^{6}$							
Doesn't do	0.5	0.2	0.5	1.4	0.0	0.2	2.5
Mild pain (0-3)	27.0	26.5	28.6	24.3	25.7	29.3	23.6
Moderate pain (4-6)	18.7	18.8	18.9	17.7	14.4	23.6	13.7
Severe pain (7-10)	19.1	24.0	16.3	12.0	15.4	19.6	25.3

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 3% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
4 "Yes" response to at least one of the following questions: (1) Have you had (this/any) pain in your knees during the past month? and (2) Have you had (this/any) pain in your hips during the past month?
${ }^{5}$ Categories for each item may not add up to percent reporting pain due to (1) rounding (2) level of severity not reported.
${ }^{6}$ Respondents who reported pain in knees or hips during the past month were asked "Please rate the average pain in your (knees) (and) (hips) during the past month by giving me a number from 0 to 10 , where 0 is no pain and 10 is severe or excruciating pain, as bad as you can imagine. How would you rate the pain when you are . . . ?"

Table 12.6: Percent Prevalence of Limb and Joint Abnormalities on Examination ${ }^{1,2}$

Examination Finding	Total$(\mathrm{N}=1002)$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \end{gathered}$	$\begin{gathered} 75.84 \\ (N=311) \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \end{gathered}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	Receives Help ($\mathrm{N}=181$)
Either wrist or any hand joint Tender on palpation or pain on passive motion Swelling Decreased range of motion							
	52.5	53.3	52.1	51.3	47.6	55.1	55.3
	26.6	24.7	30.5	21.5	22.1	28.0	32.0
	51.2	48.2	50.1	62.9	47.7	50.7	59.8
Shoulder rotation finternal and external) ${ }^{4}$ Fully able to do Partially able Unable to do at least one rotation ${ }^{5}$							
	64.5	69.1	63.3	54.2	74.8	66.2	38.2
	29.2	24.6	30.8	38.5	22.5	30.5	39.6
	6.3	6.4	5.9	7.3	2.7	3.3	22.2
Either hip Pain on passive motion							
	24.1	27.3	21.2	22.4	21.2	26.9	22.2
Either knee							
Crepitus Tender on paloation or pain on	83.3	83.4	82.2	86.1	84.8	81.9	84.1
passive motion	35.3	37.0	31.9	39.9	24.7	38.0	49.9
Bony enlargement	42.1	34.3	47.0	52.0	31.0	44.6	58.4
Angular deformity ${ }^{6}$	16.6	15.2	17.6	18.2	10.9	20.1	18.8
Either footHammer toesBunions							
	49.4	44.6	51.9	56.8	47.9	49.2	52.9
	69.7	64.0	72.6	78.5	69.0	71.1	67.0

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ Categories may not add up to 100% due to rounding.
${ }^{5}$ Of either shoulder, internal or external.
${ }^{6}$ Observed varus or valgus of greater than 5 degrees.

Table 12.7: Lower Extremity Muscle Strength Tests ${ }^{1}$

Test Result	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \end{gathered}$	$\begin{aligned} & \text { Moderate }^{2} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help $(N=478)$	Receives Help $(\mathrm{N}=181)$
Knee extensor muscle test Number completing exam ${ }^{3}$ Percent completing exam							
	826	327	256	243	305	397	124
	83.1	84.4	82.6	80.7	89.1	84.1	67.8
Muscle strength (kg) ${ }^{4}$							
Mean	13.3	14.5	12.7	11.6	14.2	13.3	11.0
5 th percentile	5.6	6.5	4.5	4.9	6.8	5.9	3.8
25 th percentile	9.8	10.7	8.9	8.9	10.5	9.8	7.8
50th percentile	12.9	14.8	12.8	11.4	13.8	12.6	10.8
75th percentile	16.4	18.1	15.4	14.9	17.5	16.4	14.1
95th percentile	21.7	22.9	21.9	20.1	22.6	21.7	17.8
Hip flexion muscle test Number completing exam ${ }^{3}$ Percent completing exam							
	781	316	239	226	305	361	115
	79.0	81.9	77.6	74.7	89.4	77.0	63.2
Muscle strength $\mathbf{~} \mathrm{kg})^{4}$							
Mean	11.9	12.9	11.4	10.0	12.3	12.0	10.2
5 th percentile	4.7	5.4	4.4	3.9	4.9	4.9	2.3
25th percentile	8.1	9.3	7.8	7.3	8.6	8.1	7.2
50th percentile	11.2	12.1	11.5	9.6	11.8	11.2	9.2
75th percentile	14.6	16.1	14.2	13.1	15.4	14.5	12.2
95th percentile	20.6	22.6	20.7	18.4	21.8	20.2	19.0

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ Descriptive statistics are based on weighted data.
${ }^{2}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{3}$ Defined as completing two trials on each leg.
${ }^{4}$ Highest of the four scores (two trials on each leg).

13

Neurological Conditions

Luigi Ferrucci, Steven J. Kittner, M. Chiara Corti, Jack M. Guralnik

This chapter reports descriptive data on three neurologic conditions that are often associated with disability in older adults: stroke, Parkinson's disease, and peripheral neuropathy. Data are also included on balance problems and falls, conditions often caused by impairments of neurological control (Horak et al., 1989; Massion, 1992; Tinetti et al., 1988).

Many chronic conditions affecting the neurological system become more prevalent with advancing age (Kurtzke, 1985; Morgante et al., 1992; Schoenberg et al., 1985). Stroke is a leading cause of death in older women and is also a leading cause of disability in activities of daily living (ADLs) and upper extremity tasks in this age group (Eaker et al., 1993; Ettinger ct al., 1994). More than 60 percent of elderly women surviving a stroke (Eaker et al., 1993) and over two-thirds of patients affected by Parkinson's disease (Peterson et al., 1988; Sutcliffe et al., 1985; Wade et al., 1986) have significant disability in ADLs. The overall contribution of stroke to disability in the older population is likely to increase in the future, since age-specific incidence rates are stable while case-fatality rates have been progressively declining in the past two decades (Baruch and Wagener, 1992). In spite of this situation, there are few epidemiologic data on the specific characteristics of neurologic diseases associated with functional deterioration.

The study of neurologic conditions in old age is particularly complex, in part because the boundary between normal aging and pathological changes of the brain is difficult to identify. Fur-
thermore, the full impact of neurologic diseases often cannot be easily determined owing to the multifaceted clinical expression of these conditions.

One of the basic approaches of the Women's Health and Aging Study (WHAS) is the development of a priori models of the causal sequences linking diseases (e.g., arthritis), integrated physiologic abilities (e.g., muscular strength of the knee extensor muscles), performance in standard physical tasks (e.g., rising from a chair), and disabilities in daily tasks (e.g., shopping). This framework may help delineate links between specific pathophysiologic mechanisms and disability in selected chronic diseases such as arthritis or respiratory conditions. However, these relationships may be considerably more complex in the presence of pathologic conditions affecting the central nervous system, which may cause problems with a wide range of physical functions, cognition, and other specific cortical functions such as speech, body image, and control of movement. Stroke, for example, may affect any or all ADL and instrumental ADL functions, depending on the location and the size of the lesion.

Stroke

History of stroke was ascertained by selfreport and will be validated by review of medical records and physician questionnaires during a later phase of the study. The data reported here (Table 13.1) are based only on self-report and
should be considered with caution, since previous studies have shown that more than one-fifth of self-reported cases are not confirmed when medical records are reviewed (Anderson et al., 1988; Heliovaara et al., 1993). However, even taking into account this possible overestimation, the prevalence of stroke among WHAS participants is substantially higher than in other populations of the same age (Kurtzke, 1985). Since eligibility for the WHAS was based on disability, this differential is consistent with the major role that stroke plays as a cause of disability in older women.

Overall, 15 percent of participants reported a stroke and 73 percent of these participants said they had been hospitalized for a stroke (Table 13.1). The prevalence of stroke, the number of strokes experienced, and the percentage of strokes that resulted in hospitalization were independent of age but strongly associated with disability.

More than 90 percent of the subjects who reported a stroke stated that it occurred more than 6 months before the interview (data not shown). Thus, in the vast majority of these subjects, impairments caused by stroke can be considered stable, at least as far as motor function is concerned (Ernst, 1990; Jongbloed, 1986). Residual symptoms resulting from a stroke are shown in Table 13.2. More than 46 percent of the subjects who reported a previous stroke did not have any residual motor impairment at the time of the interview. This result confirms previous reports on prevalence of impairments in women surviving a stroke (Pinsky et al., 1990). Although the prevalence of motor symptoms did not change substantially with age, it was higher among women receiving help with ADLs than among those with less disability.

The percentage of subjects reporting any residual non-motor symptoms-including impairment in speech, abnormal somatic sensation dizziness, loss of balance, and vision problemswas higher than the percentage of those who reported residual motor impairment. Overall, the prevalence of non-motor symptoms was inversely
related to age. There was no relationship of nonmotor symptoms in general with disability, although the prevalence of several specific speech symptoms increased with increasing disability. These data suggest that motor symptoms and changes in speech may be the most important predictors of severity of disability caused by a stroke. The lower prevalence of non-motor symptoms among older subjects is probably the result of selective survival of persons with less severe strokes.

Parkinson's Disease

The top of Table 13.3 shows the percentage of individuals reporting a history of Parkinson's disease and current treatment for Parkinson's disease. This approach to ascertainment likely underestimates the prevalence of this condition since a significant proportion of people affected by early-stage Parkinson's disease or parkinsonism will not have been identified. Overall, 2.4 percent of participants reported a history of Parkinson's disease or were being treated, which is similar to the prevalence rates that have been reported in other studies of community-dwelling populations in the same age group (Morgante et al., 1992; Shoenberg et al., 1985). Women in the oldest age group were slightly more likely to have a history of Parkinson's disease or medication use. Evidence of Parkinson's disease was present in 7 percent of women who received help with ADLs, compared with much smaller proportions of women with lesser degrees of disability.

The prevalence of symptoms that typically affect parkinsonian patients was assessed with a standardized questionnaire (Tanner et al., 1990, Table 13.3). The diagnostic value of this questionnaire has been verified in the general population (Tanner et al., 1994). Most of the parkinsonian symptoms assessed by the questionnaire showed a high prevalence in this cohort and a strong relationship with level of disability. However, the specificity of some of these symptoms for a diagnosis of Parkinson's disease or parkinsonian syndromes is poor in this population,
since many items included in the questionnaire ascertain physical problems such as "having trouble rising from a chair" or "poor balance" that may also be caused by more prevalent chronic diseases.

Peripheral Neuropathy

Several studies have documented that the function of the peripheral nervous system, especially sensory function in the distal extremities, declines with increasing age (Falco et al., 1994; Skinner et al., 1984). However, whether aging itself has an independent effect on decline in peripheral nerve function has been questioned (Letz and Gerr, 1994; Paradiso et al., 1989). In the WHAS, the presence of peripheral neuropathy was investigated by asking the participants about abnormalities in somatic sensation and by objectively measuring the threshold for vibratory sensation in the lower extremities (Maser et al., 1989).

The percentage of subjects reporting abnormal somatic sensation decreased with age and increased with level of disability (Table 13.4). A substantially greater prevalence of peripheral neuropathy in those receiving help with ADLs was indicated by the response to the question, "Have you ever burned yourself without feeling pain?" which assesses extremely severe loss of somatic sensation.

Vibratory threshold was measured in the lower extremities using the Vibratron II apparatus (Physitemp Instrument, Inc., Clifton, NJ). This test determines the sensitivity of the large toe in detecting a very small vibratory stimulus as an indicator of large-fiber peripheral nerve function. The method employed a two-alternative forced-choice procedure, in which the woman was required to indicate which of the two periods of "stimulation" applied on the lower surface of the right great toe was accompanied by an actual vibration. The intensity of the stimulus was slowly reduced by approximately 10 percent at each trial until the participant could no longer discern the vibration. When the participant
made her first error, the intensity was increased by 10 percent. This process continued, with correct trials resulting in a lowering of intensity and errors resulting in an increasing intensity until a total of five errors were made. The vibration threshold was determined by identifying the five errors and the five lowest correct scores, eliminating the highest and the lowest, and calculating the mean of the remaining eight scores. This scoring method was derived from the protocol developed by Arezzo and colleagues for the Physitemp Instrument, adapted to singletransducer equipment and validated in a series of patients affected by diabetes (Maser et al., 1989). According to this protocol, the test should be considered valid only if 18 or fewer trials are needed and not more than one error is encountered in the first 8 trials.

Only slightly more then 60 percent of the subjects met the above criteria for a valid test, and the percentage not meeting the criteria increased markedly with both age and level of disability. To present a more complete picture of the WHAS population, the measurements obtained from these women are included in the results presented in Table 13.5. Mean vibration threshold increased with age and level of disability, and the entire distribution of scores for vibration threshold was shifted higher with increasing age and level of disability, confirming previous findings (Skinner et al., 1984).

Falls and Balance-Related Problems

Falls result in physical injury, decline in function, serious morbidity, and institutionalization (Cummings and Nevitt, 1994; Kiel et al., 1991). It has recently been demonstrated that many falls can be prevented by multifactorial intervention programs (Tinetti et al., 1994).

Since many studies have shown that a disturbance in the control of balance is one of the most frequent cause of falls (Tinetti et al., 1988), both conditions are discussed in this section. The control of balance requires the coordinated function
of multiple mechanisms and the integrity of the musculoskeletal apparatus (Lord et al., 1994). It is widely recognized that instability in older adults is frequently explained by subclinical deterioration in several subsystems (Horak et al., 1989; Tinetti et al., 1988). The detection of these relatively small impairments requires techniques that cannot be easily implemented in an epidemiologic study. However, even simple performance measures of functioning have been shown to be powerful predictors of falls (Nevitt, 1989).

One-third of WHAS participants reported falling in the past year, and 15 percent fell two or more times (Table 13.6). Among those receiving help with ADLs, nearly half fell in the previous year, and nearly a quarter fell two or more times. Almost half the subjects (45 percent) reported that they had been "anxious or worried or afraid" of falling in the past 12 months, and nearly 20 percent reported limiting their activities some or most of the time because of fear of falling. The percentage of subjects reporting a history of falls, fear of falling, and limitation in activities because of fear of falling was not substantially different in the three age groups, although women age 85 years and older were twice as likely as women age 65 to 74 years to limit their activities most or all of the time because of fear of falling (15 percent versus 7 percent). There was a strong association of fall history and fear of falling with level of disability. One-third of women receiving help with ADLs reported limiting activities some or most of the time because of fear of falling.

Table 13.6 also shows self-report of dizziness, which is quite common in this cohort, and fainting, which occurred in about 5 percent of participants in the past year. The percentage of participants who fainted was very low compared with the percentage who reported falls: this is not unexpected as the main cause of most falls is a dysfunction in the control of balance not associated with loss of consciousness.

Table 13.7 presents data on self-perception of poor balance related to a range of situations in
daily life. Again, while an age effect is clearly present, there is a strong association of balance problems with level of disability.

The strong association between balance and disability is further demonstrated in Figure 13.1, which shows performance according to disability level on a series of tests investigating balance, organized in a hierarchical scale (described in detail in Chapter 4). This figure classifies the ability to maintain balance into seven progressively more demanding levels. The percentage of subjects totally unable to perform the entire set of tests, as well as the percentage of subjects unable to perform each level of the tasks, increased with level of disability. Note that in this population self-perception of problems with balance is only modestly associated with age, while performance in balance is highly age-dependent (Table 4.2). This fact suggests the development of lower expectations with aging regarding the ability to maintain stable balance or the development with aging of adaptive behavior that obscures the objective capacity to maintain stable balance.

Figure 13.1: Performance on Balance Tests by Level of Disability ${ }^{1}$

[^5]
Summary

Conditions that affect the central and peripheral nervous systems are important causes of disability in older persons. Specific diseases (stroke and Parkinson's disease) and conditions (parkinsonian symptoms, peripheral neuropathy, balance problems, and falls) related to the nervous system are common in older disabled women and have a higher prevalence in women with the most severe disability.

References

Anderson DW, Schoenberg BS, Hacrer AF. (1988). Prevalence surveys of neurologic disorders: Methodologic implications of the Copiah County Study. J Clin Epidemiol 41:339-345.

Baruch M, Wagener DK. (1992). Some epidemiological aspects of stroke: Mortality/morbidity trends, age, sex, race, socioeconomic status. Stroke 23:1230-1236.

Cummings SR, Nevitt MC. (1994). Falls. N Engl J Med 331:872-873.

Eaker ED, Chesebro JH, Sacks FM, Wenger NK, Whisnant JP, Wiston M. (1993). Cardiovascular disease in women. Circulation 88:1999-2009.

Ernst E. (1990). A review of stroke rehabilitation and physiotherapy. Stroke 21:1081-1085.

Ettinger WH, Fried LP, Harris T, Shemanski L, Schulz R, Robbins J for the CHS Collaborative Research Group. (1994). Self-reported causes of physical disability in older people: The Cardiovascular Health Study. J Am Geriatr Soc 42: 1035-1044.

Falco FJ, Hennessey WJ, Goldberg G, Braddom RL. (1994). Standardized nerve conduction studies in the lower limb of the healthy elderly. Am J Phys Med Rehabil 73:168-174.

Heliovaara M, Aromaa A, Klaukka T, Knert P, Joukama M, Impivaara O. (1993). Reliability and validity of interview data on chronic diseases: The Mini-Finland Survey. I Clin Epidemiol 46:181-191.

Horak FB, Shupert CL, Mirka A. (1989). Components of postural dyscontrol in the elderly: A review. Neurobiol Aging 10:727.738.

Jongbloed L. (1986). Prediction of function after stroke: A critical review. Stroke 17:765-776.

Kiel DP, O`Sullivan P, Teno JM, Mor V. (1991). Health care utilization and functional status in the aged following a fall. Med Care 29:221-228.

Kurtzke JF. (1985). Epidemiology of cercbrovascular disease. In: McDowell F, Caplan RL, eds. Cerebrovascular Survey Report for the National Institute of Neurological and Communicative Disorders and Stroke. Bethesda, MD: The National Institute of Neurologic and Communicative Disorders and Stroke.

Letz R, Gerr F. (1994). Covariates of human peripheral nerve function: 1 . Nerve conduction velocity and amplitude. Neurotoxicol Teratol 16:95104.

Lord SR, Ward JA, Williams P, Anstey KJ. (1994). Physiologic factors associated with falls in older community-dwelling women. J Am Geriatr Soc 42:1110-1117.

Maser RE, Nielsen VK, Bass EB, Manjoo Q, Dorman JS, Kelsey SF, Bekcer DJ, et al. (1989). Measuring diabetic neuropathy. Assessment and comparison of clinical examination and quantitative sensory testing. Diabetes Care 12:270-275.

Massion J. (1992). Movement, posture and equilibrium: Interaction and coordination. Prog Neurobiol 38:35-56.

Morgante L, Rocca WA, Di Rosa AE, De Domenico P, Grigoletto F, Meneghini F, Reggio A, et al. (1992). Prevalence of Parkinson's disease and other types of parkinsonism: A door-to-door survey in three Sicilian municipalities. Neurology 42:1901-1907.

Nevitt MC, Cummings SR, Kidd S, Black D. (1989). Risk factors for recurrent nonsyncopal falls: A prospective study. JAMA 261:2663-2668.

Paradiso G, Micheli F, Casas Parera I. (1989). Clinical and neurophysiologic tests in the normal elderly. Neurologia 4:39-42.

Peterson GM, Nolan BW, Millingen KS. (1988). Survey of disability that is associated with Parkinson's disease. Med J Aust 149:69-70.

Pinsky JL, Jette AM, Kannel WB, Feinleib M. (1990). The Framingham Disability Study: Relationship of various coronary heart disease manifestations to disability in older persons living in the community. Am J Public Health 80:13631367.

Schoenberg BS, Anderson DW, Haerer AF. (1985). Prevalence of Parkinson's disease in the biracial population of Copiah County, Mississipi. Neurology 35:841-845.

Skinner HB, Barrack RL, Cook S. (1984). Agerelated decline in proprioception. J Am Geriatr Soc 42:1035-1044.

Sutcliffe RL, Prior R, Mawby B, McQuillan WJ. (1985). Parkinson's disease in the district of the Northampton Health Authority, United Kingdom. A study of prevalence and disability. Acta Neurol Scand 72:363-379.

Tanner CM, Gilley DW, Goetz CG. (1990). A brief screening questionnaire for parkinsonism. Ann Neurol 28:267-268.

Tanner CM, Ellenberg JH, Mayeoux R, Ottman R, Langston JW. (1994). A sensitive and specific screening method for Parkinson's disease. Neurology 44(suppl 2):42P.

Tinetti ME, Speechley M, Ginter SF. (1988). Risk factors for falls among elderly persons living in the community. N Engl J Med 319:1701-1707.

Tinetti ME, Baker DI, McAvay G, Claus EB, Garret P, Gottschalk M, Koch EB, et al. (1994). A multifactorial intervention to reduce the risk of falling among elderly people living in the community. N Eng J Med 331:821-827.

Wade DT, Hewer RL, Haerer AF, Anderson DW, Schoenberg BS. (1986). Functional disability associated with major neurologic disorders: Findings from the Copiah County Study. Arch Neurol 43:1000-1003.

Table 13.1: Percent Prevalence of Self-Reported Stroke ${ }^{1,2}$

Condition and Treatment	Total	Age Group			Disability Level		
		65-74	75-84	$85+$	Moderate ${ }^{3}$	ADL Difficulty	
						Receives No Help	Receives Help
All Participants	$(\mathrm{N}=1002$)	($\mathrm{N}=388$)	$(\mathrm{N}=311)$	($\mathrm{N}=303$)	$(\mathrm{N}=343)$	($\mathrm{N}=478$)	($\mathrm{N}=181$)
Has a doctor ever told you that you had a stroke? ${ }^{4}$ Yes	14.7	15.5	14.4	12.9	10.2	11.4	32.8
Participants Reporting Stroke	$(\mathrm{N}=143)$	($N=61$)	($\mathrm{N}=45$)	$(\mathrm{N}=37)$	($\mathrm{N}=34$)	$(\mathrm{N}=55)$	$(\mathrm{N}=54)$
Have you ever been hospitalized for a stroke? Yes	73.2	75.6	74.5	60.1	68.5	71.1	78.3
How many strokes have you had? ${ }^{5}$							
One	64.0	67.3	60.9	62.1	74.3	60.3	61.1
More than one	36.0	32.7	39.2	37.9	25.7	39.7	38.9

(Women's Health and Aging Study, screening and baseline interviews, 1992-1995)
${ }^{1}$ All variables have less than 5% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ The question was asked in the screener interview and the presence of the condition was confirmed in the baseline interview.
${ }^{5}$ Categories may not add up to 100% due to rounding.

Table 13.2: Percent Prevalence of Current Residual Symptoms Resulting from a Stroke ${ }^{1,2,3}$

Stroke Symptom	Total	Age Group			Disability Level		
		65-74	75-84	$85+$	Moderate ${ }^{4}$	ADL Difficulty	
						Receives No Help	Receives Help
Participants Reporting Stroke ${ }^{5}$	($\mathrm{N}=143$)	($\mathrm{N}=61$)	($\mathrm{N}=45$)	($\mathrm{N}=37$)	$(\mathrm{N}=34)$	($\mathrm{N}=55$)	($\mathrm{N}=54$)
Any motor symptoms(weakness) ${ }^{\text {6/7 }}$Left side onlyRight side onlyBoth sides	53.3	56.8	50.3	50.1	41.4	45.3	68.9
	31.8	34.9	27.8	33.4	21.4	31.6	38.9
	15.3	16.0	15.9	11.1	12.9	8.2	23.7
	6.2	6.0	6.7	5.7	7.0	5.5	6.3
Any non-motor symptoms	62.7	68.2	61.6	47.2	60.0	64.7	62.5
Any effect on speech	24.8	29.8	21.0	18.7	19.5	26.9	26.1
Loss or change in speech ${ }^{8}$	20.1	21.4	20.6	14.3	16.1	17.6	25.2
Slurred speech ${ }^{9}$	10.9	10.7	12.2	7.6	6.1	7.3	17.6
Wrong words came out ${ }^{10}$	11.9	12.6	11.5	10.3	13.5	8.4	14.3
Words would not come out ${ }^{11}$ Could not think of right	14.8	13.3	18.6	8.8	13.5	18.3	12.3
words ${ }^{12}$	11.0	13.0	7.3	15.6	6.0	18.9	6.7
Numbness, tingling, or loss of feeling ${ }^{13}$ Left side only Right side only Both sides							
	15.8	18.1	16.9	4.9	17.1	12.4	18.3
	10.4 1.9	9.9 1.6	11.7 2.5	8.2 1.3	3.4 4.2	8.8 2.5	16.4 0.0
Dizziness, loss of balance, or sensation of spinning ${ }^{14}$	31.2	30.4	34.4	24.5	25.2	35.7	30.7
Loss or blurring of vision, complete or partial ${ }^{15}$							
Left eye only	7.6	5.0	11.0	5.9	10.3	6.9	6.6
Right eye only	4.0	3.4	4.6	3.8	3.4	0.0	7.9
Both eyes	8.6	4.8	13.6	6.1	9.8	4.7	11.4

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 5% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Responses are included in this table if the participants reported experiencing the symptom as a result of a stroke and answered "Yes" to "Do you still have this problem?"
${ }^{4}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{5}$ Responded "Yes" to "Has a doctor ever told you that you had a stroke?"
${ }^{6}$ Sum of rates for categories may not equal rate for any motor symptoms due to rounding.
${ }^{7}$ Weakness in side of the body is included if the participant answered "Yes" to "After (any of) your stroke(s), did you have weakness in your [part of body]?"
${ }^{8}$ Did you have a sudden loss or change in speech as a result of (any of) your stroke(s)?
${ }^{9}$ Your speech was slurred like you were drunk.
${ }^{10}$ You could talk, but the wrong words came out.
${ }^{11}$ You knew what you wanted to say, but the words would not come out.
${ }^{12}$ You could not think of the right words.
${ }^{13}$ Did you have sudden numbness, tingling, or a loss of feeling in either side of your body, including your face, arm, or leg, as a result of any stroke?
${ }^{14}$ Did you have sudden dizziness, loss of balance, or a sensation of spinning as a result of a stroke?
${ }^{15}$ After (any of) your stroke(s), did you have sudden loss or blurring of vision, either complete or partial?

Table 13.3: Percent Prevalence of Self-Reported Parkinson's Disease and Parkinsonian Symptoms ${ }^{1,2}$

		Age Group					

(Women's Health and Aging Study, screening and baseline interviews, 1992-1995)
${ }^{1}$ All variables have less than 2% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ The question was asked in the screener interview and the presence of the condition was confirmed in the baseline interview.
${ }^{5}$ Interviewers asked participants: "May I see the medicine bottles, containers or bags for all of the medicines that you have taken or used in the last two weeks? Please include medicine prescribed by a doctor and medicine not prescribed by a doctor." Evidence of current use of L-dopa or Sinemet is based on the interviewer's notation of at least one of these among the drugs shown.
6 "Yes" to the question about having Parkinson's disease, or evidence of current use of L-dopa or Sinemet.
${ }^{7}$ Tanner CM, et al. (1990). A brief screening questionnaire for parkinsonism. Ann Neurol 28:264-268.

Table 13.4: Percent Prevalence of Abnormal Peripheral Sensation ${ }^{1,2}$

Symptom	$\begin{gathered} \begin{array}{c} \text { Total } \\ (\mathrm{N}=1002) \end{array} \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \end{gathered}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=181) \\ & \hline \end{aligned}$
Abnormal peripheral sensation ${ }^{4}$	9.6	10.7	9.4	6.9	3.6	11.4	16.7
Is your abnormal sensation found in your . . .?							
A. Legs or feet Yes	6.7	8.1	6.1	4.3	2.6	8.6	10.0
B. Arms or hands Yes	8.2	9.6	7.8	4.9	3.2	9.6	14.5
If yes to both A and B	5.4	7.0	4.5	2.9	2.2	6.8	8.2
Have you ever burned yourself without feeling pain? Yes	1.7	2.1	1.6	0.8	1.1	1.2	4.4

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ Includes positive response to any of the items below.

Table 13.5: Vibration Sensitivity Test ${ }^{1,2}$

Test Result	Total$(\mathrm{N}=1002)$	Age Group			Disability Level		
		$\begin{gathered} 65.74 \\ (\mathrm{~N}=388) \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	Receives Help $(\mathrm{N}=181)$
Number completing exam	898	364	287	247	320	430	148
Percent completing exam	91.6	94.2	92.3	81.9	94.3	92.4	83.6
Vibration threshold (microns) ${ }^{4,5}$ Mean	4.1	3.6	4.2	5.3	3.6	4.3	4.5
5 th percentile	1.2	1.0	1.4	2.0	1.1	1.5	1.2
25th percentile	2.5	2.2	2.6	3.7	2.2	2.8	2.9
50 th percentile	3.9	3.1	3.9	5.0	3.2	4.2	4.5
75th percentile	5.5	4.7	5.2	6.9	4.7	5.9	6.1
95 th percentile	8.6	7.9	8.5	9.2	8.3	8.9	8.9

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ Descriptive statistics are based on weighted data.
${ }^{2}$ Data obtained by using Vibratron II (Physitemp Instrument).
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ Maser RE, et al. (1989). Measuring diabetic neuropathy. Assessment and comparison of clinical examination and quantitative sensory testing. Diabetes Care 12(4):270-275.
${ }^{5}$ The method for calculating vibration threshold is described in the text.

Table 13.6: Percent Prevalence of Dizziness, Fainting, Falls and Fear of Falling ${ }^{1,2}$

Symptom	Total$(\mathrm{N}=1002)$	Age Group			Disability Level		
		$\begin{gathered} 65.74 \\ (N=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($N=478$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (N=181) \\ & \hline \end{aligned}$
Do you ever feel dizzy or lightheaded after standing up? Yes	38.6	39.8	37.3	39.0	35.1	38.7	45.7
Have you fainted during the past year? Yes	5.2	4.1	5.9	6.8	5.3	4.6	6.6
Have you fallen in the past 12 months? ${ }^{4}$ Yes	34.0	30.3	36.5	38.2	26.9	34.4	47.7
Number of falls ${ }^{5.6}$ 1 2 or more	$\begin{aligned} & 18.6 \\ & 15.1 \end{aligned}$	$\begin{aligned} & 15.3 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 21.1 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 15.6 \end{aligned}$	$\begin{aligned} & 15.3 \\ & 11.6 \end{aligned}$	19.0 14.9	$\begin{aligned} & 24.5 \\ & 23.1 \end{aligned}$
In the past 12 months, have you been anxious or worried or afraid you might fall? Yes	45.2	44.9	44.1	49.2	32.8	50.9	55.3
Limitation in activities because of fear of falling ${ }^{7.8}$							
No	24.1	24.6	23.6	24.1	22.1	27.4	19.3
Rarely	2.3	3.2	1.9	1.1	1.0	3.5	1.9
Some of the time	9.6	10.1	9.5	8.6	5.4	10.3	16.5
Most or all of the time	9.2	7.1	9.2	15.4	4.3	9.8	17.5

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ Falling includes falling on the ground or at some other level, such as a chair.
${ }^{5}$ How many times have you fallen in the last 12 months?
${ }^{6}$ Categories may not add up to percent reporting falls due to (1) rounding (2) number of falls not reported.
${ }^{7}$ Do you ever limit your activities, for example, what you do or where you go, because you are afraid of falling? Do you limit your activities because of a fear of falling . . . ?
${ }^{8}$ Categories may not add up to percent afraid of falling due to (1) rounding (2) limitation in activities not reported.

Table 13.7: Percent Prevalence of Balance Problems During Daily Activities ${ }^{1,2}$

Symptom ${ }^{3}$	$\begin{gathered} \text { Total } \\ \langle\mathrm{N}=1002) \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{gathered} \text { Moderate }{ }^{4} \\ (\mathrm{~N}=343) \end{gathered}$	ADL Difficulty	
						Receives No Help $(N=478)$	Receives Help $(N=181)$
Problem keeping balance when Walking on a level surface ${ }^{5}$							
Always, very often or often	18.9	15.5	18.7	29.5	10.2	18.8	37.2
Sometimes	43.4	43.1	44.0	42.8	44.3	45.3	36.6
Never	36.4	40.2	36.0	26.1	45.5	35.4	20.2
Doesn't do	1.3	1.2	1.3	1.6	0.0	0.6	6.0
Dressing while standing ${ }^{5}$							
Always, very often or often	19.6	16.7	19.6	27.9	9.6	20.4	38.4
Sometimes	35.0	36.5	35.6	29.0	34.0	35.7	35.2
Never	43.7	45.4	43.1	40.4	56.4	41.9	22.0
Doesn't do	1.7	1.3	1.7	2.8	0.0	2.0	4.5
Standing with your eyes closed, such as standing in the shower ${ }^{5}$							
Always, very often or often	18.8	17.3	18.2	24.7	11.2	17.4	38.8
Sometimes	25.5	24.7	28.5	19.8	24.8	27.5	21.3
Never	48.9	52.3	46.5	45.1	60.8	47.5	27.5
Doesn't do	6.8	5.7	6.8	10.3	3.2	7.6	12.4
Walking down stairs ${ }^{5}$							
Always, very often or often	21.8	21.8	22.1	21.2	12.4	23.7	36.7
Sometimes	23.7	26.0	22.6	19.8	26.6	23.1	18.9
Never	49.8	50.6	50.0	47.1	59.2	49.2	31.5
Doesn't do	4.7	1.7	5.3	11.9	1.8	4.0	12.9

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 5% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ Categories for each item may not add up to 100% due to rounding.
${ }^{4}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{5}$ The question is in the form ". . . please tell me if you have any problem with keeping your balance when you are . . ."

Vision and Hearing

Gary S. Rubin, Marcel E. Salive

Both vision and hearing impairment increase dramatically with advancing age. The Baltimore Eye Survey (Tielsch et al., 1990) reported crude prevalence rates of visual impairment (acuity less than $20 / 60$ in the better eye) of 0.6 percent for Whites and 1.0 percent for Blacks age 40 to 49 years and 2.1 percent for Whites and 6.0 percent for Blacks age 70 to 79 years. Data from three communities in the Established Populations for Epidemiologic Studies of the Elderly (EPESE) indicate a vision impairment rate of 8.2 percent for persons age 71 to 74 years, increasing to 22.2 percent for those age 80 to 84 years (Salive et al., 1992). Prevalence rates based on self-report, such as the data from the National Health Interview Survey (NHIS), are comparable (Havlik, 1986). There are few recent data on objectively determined hearing loss, but data based on self-report indicate that hearing disorders are among the five most common chronic conditions in the U.S. population age 65 years and older (Collins, 1993). Twenty-six percent of adults age 65 to 74 years report deafness or other hearing impairment, and the prevalence increases to 37 percent in those 75 years and older.

Several population-based studies have found that sensory impairment is strongly associated with physical disability among older adults. Cross-sectional analyses of survey data from the NHIS (Havlik, 1986), the Massachusetts Health Care Panel Study (MHCPS; Jette and Branch, 1985), and the Longitudinal Study of Aging (LSOA; Rudberg et al., 1993) showed that persons age 65 years and older who reported visual impairment were more likely to have difficulty
with activities of daily living (ADLs). Hearing impairment was not significantly or independently associated with disability in the MHCPS or LSOA. Several European studies (Bergman and Sjostrand, 1992; Carebellese et al., 1993; Hakkinen, 1984; Thompson et al., 1989) concluded that visual impairment measured by visual acuity was associated with a lack of self-sufficiency in the home and difficulty with daily tasks. Hearing impairment, assessed with a speech recognition task, was also associated with decreased self-sufficiency in the Italian study (Carabellese et al., 1993). Finally, visual impairment (Dunn et al., 1992; Gerson et al., 1989; Grisso et al., 1991) and hearing impairment (Dunn et al., 1992; Gerson et al., 1989) we re both significant risk factors for balance problems and falls, especially for older women.

Longitudinal studies have had less consistent findings. A 2 -year followup of participants in the LSOA showed no association between visual im-pairment-defined as the presence of an eye disease or "trouble seeing"-and the progression of physical disability (Harris et al., 1989). However, data from a 4-year followup of the LSOA showed an increased risk for progression of disability in participants with visual impairment, independent of other chronic conditions. A $5 \cdot y e a r$ followup of the MHCPS cohort found that change in ability to perform daily activities was not related to self-reported change in vision. These discrepancies may be due, in part, to the use of self-report rather than objective measures of visual impairment. Among persons initially free of mobility or ADL limitations in the EPESE population, se-
verely impaired visual acuity was associated with a threefold higher incidence of mobility and ADL limitations over 15 months, independent of diabetes and stroke (Salive et al., 1994).

In the Women's Health and Aging Study (WHAS), both vision and hearing were assessed by questionnaire and using objective tests. This chapter describes the test procedures and provides the distribution of the test results and questionnaire responses as they relate to age and disability status.

Vision Questionnaire and Acuity Test

As part of a comprehensive medical questionnaire, all participants were asked about current and previous eye conditions. Use of eyeglasses and ability to see well enough to perform several everyday visual tasks was also queried. The questions are listed in Tables 14.1 and 14.2.

Visual acuity was tested with the Goodlite Portable Eye Chart (Model A with LD-10 translucent acuity card). The Goodlite Chart is small and lightweight and contains its own source of standardized illumination. The LD-10 chart uses the Sloan letter set, which has been recommended by the National Academy of Sciences/National Research Council Committee on Vision (National Academy of Sciences, 1980). The test was administered in a darkened room with the participant wearing her customary glasses used for viewing distant objects. If she used bifocals or trifocals, the participant was instructed to view through the segment used for distance vision (usually the top). All testing was done with both eyes together, that is, binocularly. The test distance was initially set at 10 feet, but if the participant was unable to read the largest letters at this distance, the chart was placed 5 feet away and, if necessary, 2.5 feet away. The acuity test was administered in a "forced-choice" fashion; that is, the participant was instructed to provide a letter response for each target and to guess if she was uncertain. Testing proceeded until at
least 75 percent of the targets on a single row were missed. This forced-choice procedure has been demonstrated to yield more reliable data than procedures that allow the participant to decide when to terminate the test (Rubin, 1988). In scoring the acuity test, credit was given for each letter correctly identified (Bailey et al., 1991). Although the letter size decreases on each line by a constant $0.1 \log$ units (26 percent) from the preceding line, the number of letters per line increases down the chart in a variable manner. Therefore, the credit awarded for each letter was $0.1 \log$ units divided by the number of letters on that line. The total score was given as an acuity measure in logMAR ($\log _{10}$ minimum angle of resolution) units. All analyses were performed with logMAR units, but the logMAR values were converted to the more familiar Snellen fraction (e.g., 20/20) for reporting purposes. The test is capable of measuring acuities ranging from 1.4 $\operatorname{logMAR}(20 / 500)$ for zero letters correct at 2.5 feet to $-0.9 \operatorname{logMAR}(20 / 16)$ for all letters correct at 10 feet.

Vision Results

Table 14.1 shows the percentage of participants reporting a history of ocular conditions. Cataract was the most common condition, but the question did not separate those with current cataract from those who had undergone cataract surgery before the study. Cataract, macular degeneration, and eye injury were reported by a larger percentage of participants in the age group 85 years and older than in the younger age groups. Prevalence of glaucoma and diabetic retinopathy did not increase with age.

The vast majority of participants (95 percent) reported wearing eyeglasses at least sometimes or for particular tasks such as reading or driving, and 82 percent wore them for the vision test. Table 14.2 lists the percentage of participants who reported difficulty with everyday visual tasks. The most frequently reported problem was blurry vision (37 percent) followed by difficulty reading a newspaper (13 percent). Difficulty reading a newspaper was more common among
participants who received help with ADLs (22 percent) than among those with lower levels of disability (10 to 11 percent).

Visual acuity scores are presented in Table 14.3. Twenty-three percent of participants had 20/20 acuity or better, while fewer than 2 percent would be considered legally blind (acuity less than 20/200). Using the World Health Organization definition of visual impairment-visual acuity less than 20/60-8 percent would be considered at least moderately visually impaired. This percentage increased with age and was higher in those receiving help with ADLs than in the remainder of the cohort.

Hearing Questionnaire and Audiometry

A brief hearing questionnaire was administered, including items from the Hearing Handicap Inventory for the Elderly-Screening Version (Ventry and Weinstein, 1982). Items included in the hearing questionnaire are listed in Table 14.4. Participants were also asked about their use of hearing aids.

Hearing loss was assessed with the Welch Allyn Audioscope3. The instrument combines an otoscope with a handheld audiometer and has been shown to provide accurate and efficient early detection of hearing loss (Lichtenstein et al., 1988). The Audioscope 3 provides screening at $1,000,2,000,4,000$, and 500 Hz , respectively, with a 40 dB tone. To the extent possible, the test was administered in a quiet area of the participant's home. The Audioscope3 was fitted with one of three ear speculae, the largest that would fit comfortably into the ear canal, and the built-in otoscope was used to look at the tympanic membrane. The presence of cerumen that blocked the tympanic membrane was noted.

Before testing, a $1,000 \mathrm{~Hz}$ practice tone was delivered at 60 dB . This was followed by four screening tests, two for each ear, alternately, beginning with the left ear. The participant was instructed to raise her hand each time she heard
a tone and put her hand down when the tone stopped. The test was scored as pass/fail at each tone tested; the participant had to fail both trials to fail that frequency for a given ear. Hearing impairment was defined based on the criteria of Lichtenstein et al. (1988).

Hearing Results

Results from the hearing questionnaire are shown in Table 14.4. Nine percent of the participants used a hearing aid, with a dramatic increase with age, from 5 percent of those age 65 to 74 years to 23 percent of those age 85 years and older. While 9 percent of respondents reported that hearing difficulty hampered their personal or social life, 46 to 51 percent reported difficulty with specific tasks such as hearing conversation when there is a radio or TV on in the room or when the person is speaking in a whisper.

The prevalence of hearing impairment, shown in Table 14.5, was much higher than visual impairment. Overall, 39 percent of participants were classified as hearing impaired, with a 40 dB hearing loss at 1,000 or $2,000 \mathrm{~Hz}$ in both ears or at 1,000 and $2,000 \mathrm{~Hz}$ in a single ear, and 33 percent were bilaterally impaired. The percentages increased markedly with age: 72 percent of women age 85 years and older showed hearing impairment, and 67 percent showed bilateral hearing impairment. Because of the strong age gradient in rates of hearing impairment, disabil-ity-specific rates of impairment were ageadjusted. After adjusting for age, hearing impairment was not strongly associated with disability status.

Summary

The prevalence of vision and hearing impairments was considerable, as would be expected among older women with moderate to severe functional limitations and disability. In this cross-sectional examination, impaired vision appeared to be related to both age and disability,
while hearing impairment was related primarily to age. In comparing the frequency of vision and hearing impairment from this study with that reported in previous studies, it should be noted that visual acuity was measured binocularly with glasses and hearing impairment was measured without a hearing aid.

References

Bailey IL, Bullimore MA, Raasch TW, Taylor HR. (1991). Clinical grading and the effects of scaling. Invest Ophthalmol Vis Sci 32:422-432.

Bergman B, Sjostrand J. (1992). Vision and visual disability in the daily life of a representative population sample aged 82 years. Acta Ophthalmol 70:33-43.

Carabellese C, Appollonio I, Rozzini R, Bianchetti A, Frisoni GB, Frattola L, Trabucchi M. (1993). Sensory impairment and quality of life in a community elderly population. J Am Geriatr Soc 41:401-407.

Collins JG. (1993). Prevalence of selected chronic conditions: United States, 1986-88. Vital Health Stat 10(182):1-87.

Dunn JE, Rudberg MA, Furner SE, Cassel CK. (1992). Mortality, disability, and falls in older persons: The role of underlying disease and disability. Am J Public Health 82:395-400.

Gerson LW, Jarjoura D, McCord G. (1989). Risk of imbalance in elderly people with impaired hearing or vision. Age Ageing 18:31-34.

Grisso JA, Kelsey JL, Strom BL, Chiu GY, Maislin G, O'Brien LA, Hoffman S, et al., for the Northeast Hip Fracture Study Group. (1991). Risk factors for falls as a cause of hip fracture in women. N Engl J Med 324:1326-1331.

Hakkinen L. (1984). Vision in the elderly and its use in the social environment. Scand J Soc Med 35(suppl.):5-60.

Harris T, Kovar MG, Suzman R, Kleinman JC, Feldman JJ. (1989). Longitudinal study of physical ability in the oldest-old. Am J Public Health 79:698-702.

Havlik RJ. (1986). Aging in the eighties, impaired senses for sound and light in persons age 65 years and over. Preliminary data from the Supplement on Aging to the National Health Interview Survey: United States, January-June 1984. Advance Data No. 125:1-7. DHHS Pub. No. (PHS) 86-1250. Hyattsville, MD: National Center for Health Statistics.

Jette AM, Branch LG. (1985). Impairment and disability in the aged. J Chronic Dis 38:59-65.

Lichtenstein MJ, Bess FH, Logan SA. (1988). Validation of screening tools for identifying hearing-impaired elderly in primary care. JAMA 259:2875-2878.

National Academy of Sciences, National Research Council. (1980). Recommended standard procedures for the clinical measurement and specification of visual acuity. Report of working group 39. Adv Ophthalmol 41:103-148.

Rubin GS. (1988). Reliability and sensitivity of clinical contrast sensitivity tests. Clin Vision Sci 2:169-177.

Rudberg MA, Furner SE, Dunn JE, Cassel CK. (1993). The relationship of visual and hearing impairments to disability: An analysis using the Longitudinal Study of Aging. J Gerontol Med Sci 48:M261-M265.

Salive ME, Guralnik JM, Christen W, Glynn RJ, Colsher P, Ostfeld AM. (1992). Functional blindness and visual impairment in older adults from three communities. Ophthalmology 99:18401847.

Salive ME, Guralnik JM, Glynn RJ, Christen W, Wallace RB, Ostfeld AM. (1994). Association of visual impairment with mobility and physical function. J Am Geriatr Soc 42:287-292.

Thompson JR, Gibson JM, Jagger C. (1989). The association between visual impairment and mortality in elderly people. Age Aging 18:83-88.

Tielsch JM, Sommer A, Witt K, Katz J, Royall RM. (1990). Blindness and visual impairment in an American urban population. The Baltimore Eye Survey. Arch Ophthalmol 108:286-290.

Ventry I, Weinstein B. (1982). The Hearing Handicap Inventory for the Elderly: A new tool. Ear Hear 3:128-134.

Table 14.1: Percent Reporting a History of Ocular Conditions ${ }^{1,2}$

Condition	Total$(N=1002)$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	Moderate ${ }^{3}$$(\mathrm{N}=343)$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	Receives Help $(\mathrm{N}=181)$
Has a doctor ever told you that you had . . . ? Glaucoma or suspected glaucoma							
	15.9	15.1	17.0	15.3	17.2	14.1	18.4
Cataract ${ }^{4,5}$							
One eye only	27.7	23.7	28.8	36.0	28.9	28.1	
Both eyes	31.6	22.0	38.9	40.2	31.2	34.0	26.1
No cataract	40.7	54.3	32.2	23.8	39.9	37.9	
Diabetic retinopathy or eye disease from diabetes	3.3	4.8	2.5	1.1	3.2	2.1	6.9
Macular degeneration or age related maculopathy	4.0	1.9	4.4	9.0	4.7	3.8	3.1
An eye injury which permanently reduced your ability to see	4.7	5.0	3.8	6.0	4.7	4.7	4.6
Double vision	4.5	3.4	5.6	4.9	4.0	4.1	6.7

(Women's Health and Aging Study, baseline interview, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ Constructed from responses to two questionnaire items: (1) Has a doctor ever told you that you had a cataract in one eye? (2) Has a doctor ever told you that you had cataracts in both eyes, at the same time?
${ }^{5}$ Categories may not add up to 100% due to rounding.

Table 14.2: Percent Reporting Vision Problems ${ }^{1,2}$

Use of Glasses and Visual Symptom	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help ($\mathrm{N}=478$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=181) \\ & \hline \end{aligned}$
Do you have glasses or contact lenses? Yes	94.7	95.2	94.7	93.2	94.9	95.5	92.2
If yes: Do you wear them . . . ?4 Most of the time	66.9	66.2	66.3	70.7	66.4	68.2	64.2
Sometimes	9.8	9.2	10.8	8.7	7.6	10.3	12.8
For special reasons, such as reading or driving Never	21.6 1.7	23.6 1.0	20.9 2.0	17.6 3.1	23.3 2.7	21.0 0.5	$\begin{array}{r} 19.8 \\ 3.2 \end{array}$
Can you see well enough to recognize someone across the room? ${ }^{5}$ No	5.4	3.6	5.8	9.7	5.8	4.7	6.6
Can you see well enough to watch TV? ${ }^{5}$ No	5.0	4.2	4.1	9.6	5.3	4.2	6.5
Can you see well enough to read the newspaper? ${ }^{5}$ No	12.6	8.4	14.1	21.0	9.9	11.4	21.6
Do you ever have trouble with blurred vision? Yes	37.0	38.5	36.4	34.2	36.5	35.3	42.7

(Women's Health and Aging Study, baseline interview, 1992-1995)
All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ Categories may not add up to 100% due to rounding.
${ }^{5}$ When applicable, the phrase, "with glasses, if needed," is embedded in the questionnarre item.

Table 14.3: Visual Acuity Measure ${ }^{1,2}$

Test Result	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (N=303) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \\ & \hline \end{aligned}$	ADL Difficulty	
						Receives No Help $(N=478)$	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (N=181) \\ & \hline \end{aligned}$
Number completing exam	907	364	273	270	309	445	153
Percent completing exam	91.0	94.1	88.3	89.2	89.7	93.5	86.7
Worn for exam (\%) ${ }^{4}$							
Glasses	81.7	82.3	81.0	81.3	83.3	81.7	77.8
Contact lenses	0.6	0.5	0.8	0.3	0.4	0.7	0.9
Neither	17.8	17.1	18.2	18.4	16.3	17.6	21.3
Snellen denominator (Mean) ${ }^{5}$	38.0	32.8	38.9	51.6	38.1	35.2	46.3
Visual acuity (\%) ${ }^{5}$							
20/20 or better	23.3	33.9	17.4	6.7	26.8	23.8	14.6
20/40 or better	76.7	86.3	74.3	53.6	82.1	79.1	58.4
20/60 or better	91.6	94.5	90.9	84.4	91.1	94.5	83.9
20/200 or better	98.4	98.7	98.4	97.2	97.7	99.0	97.8
Worse than 20/200	1.6	1.3	1.6	2.8	2.3	1.0	2.2

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
${ }^{2}$ Descriptive statistics are based on weighted data.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ Categories may not add up to 100% due to rounding.
${ }^{5}$ Visual acuity was measured using a Goodlite portable eye chart, usually at a distance at 10 feet. Acuity is presented as 20/Snellen denominator where the Snellen denominator is computed from correct answers on the acuity test and viewing distance (using log 10 minimum angle of resolution).

Table 14.4: Percent Reporting Hearing Problems ${ }^{1,2}$

Symptom	Total$\langle N=1002 \text {) }$	Age Group			Disability Level		
						ADL Difficulty	
		$\begin{gathered} 65-74 \\ (\mathrm{~N}=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{array}{r} 85+ \\ (\mathrm{N}=303) \\ \hline \end{array}$	$\begin{aligned} & \text { Moderate }^{3} \\ & (\mathrm{~N}=343) \end{aligned}$	Receives No Help ($N=478$)	$\begin{gathered} \text { Receives } \\ \text { Help } \\ (N=181) \\ \hline \end{gathered}$
Do you use a hearing aid? Yes	9.3	4.8	9.2	22.8	8.7	10.5	7.2
Can you hear well enough to use the telephone? No	5.9	4.6	6.0	9.1	5.1	6.9	4.6
Can you hear well enough to carry on conversation in a crowded room? No	18.3	15.0	19.4	25.2	14.8	21.3	17.5
Do you have trouble hearing another person if there is a radio or TV playing in the same room? Yes	45.9	40.7	48.0	55.9	39.1	48.3	53.7
Do you have difficulty hearing when someone speaks in a whisper? ${ }^{4}$ Yes	50.9	41.0	55.4	67.6	45.9	53.2	54.8
Does a hearing problem cause you to feel frustrated when talking to members of your family? ${ }^{4}$ Yes Not applicable ${ }^{5}$	$\begin{aligned} & 12.5 \\ & 31.3 \end{aligned}$	$\begin{aligned} & 10.1 \\ & 38.5 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 28.0 \end{aligned}$	$\begin{aligned} & 19.6 \\ & 19.1 \end{aligned}$	$\begin{aligned} & 10.4 \\ & 36.8 \end{aligned}$	$\begin{aligned} & 12.8 \\ & 28.1 \end{aligned}$	$\begin{aligned} & 15.8 \\ & 28.6 \end{aligned}$
Does a hearing problem cause you to attend church, movies, concerts or other events less often than you would like? ${ }^{4}$ Yes Not applicable ${ }^{5}$	$\begin{array}{r} 6.1 \\ 31.3 \end{array}$	$\begin{array}{r} 3.8 \\ 38.5 \end{array}$	6.7 28.0	$\begin{aligned} & 111 \\ & 19.1 \end{aligned}$	$\begin{array}{r} 3.9 \\ 36.8 \end{array}$	$\begin{array}{r} 7.9 \\ 28.1 \end{array}$	$\begin{array}{r} 5.4 \\ 28.6 \end{array}$
Does a hearing problem cause you to have arguments with family members? ${ }^{4}$ Yes Not applicable ${ }^{5}$	$\begin{array}{r} 5.1 \\ 31.3 \end{array}$	$\begin{array}{r} 4.2 \\ 38.5 \end{array}$	$\begin{array}{r} 5.3 \\ 28.0 \end{array}$	$\begin{array}{r} 7.3 \\ 19.1 \end{array}$	$\begin{array}{r} 3.6 \\ 36.8 \end{array}$	$\begin{array}{r} 5.7 \\ 28.1 \end{array}$	$\begin{array}{r} 6.9 \\ 28.6 \end{array}$
Does a hearing problem cause you difficulty when listening to television or the radio? ${ }^{4}$ Yes Not applicable ${ }^{5}$	$\begin{aligned} & 13.3 \\ & 31.3 \end{aligned}$	$\begin{array}{r} 9.3 \\ 38.5 \end{array}$	$\begin{aligned} & 14.3 \\ & 28.0 \end{aligned}$	$\begin{aligned} & 22.4 \\ & 19.1 \end{aligned}$	$\begin{array}{r} 9.7 \\ 36.8 \end{array}$	$\begin{aligned} & 14.9 \\ & 28.1 \end{aligned}$	$\begin{aligned} & 16.4 \\ & 28.6 \end{aligned}$
Do you feel that any difficulty with your hearing limits or hampers your personal or social life? ${ }^{4}$ Yes	9.0	5.8	10.1	15.7	5.6	11.5	9.3

(Women's Health and Aging Study, baseline interview, 1992-1995)

[^6]Table 14.5: Hearing Impairment Detected by Audiometry ${ }^{1}$

Test Result	$\begin{gathered} \text { Total } \\ (\mathrm{N}=973) \end{gathered}$	Age Group			Disability Level			Age-Adjusted Disability Level ${ }^{2}$				
					ADL Difficulty			$\begin{gathered} \text { Moder- } \\ \text { ate }^{3} \\ \hline \end{gathered}$	ADL Difficulty			
		$\begin{array}{\|c\|} 65-74 \\ (\mathrm{~N}=378) \\ \hline \end{array}$	$\begin{gathered} 75-84 \\ (\mathrm{~N}=304) \\ \hline \end{gathered}$	$\begin{array}{\|r\|} 85+ \\ (\mathrm{N}=291) \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} \text { Moder- } \\ \text { ate } \end{array} \\ (\mathrm{N}=338) \\ \hline \end{gathered}$	Receives No Help ($\mathrm{N}=459$)	$\begin{aligned} & \text { Receives } \\ & \text { Help } \\ & (\mathrm{N}=176) \\ & \hline \end{aligned}$		Receives No Help	$\begin{array}{\|c} \begin{array}{c} \text { Receives } \\ \text { Help } \end{array} \\ \hline \end{array}$		
Impaired hearing (\%) ${ }^{4}$	38.5	21.2	45.1	71.9	33.4	40.5	43.5	33.2	36.7	36.3		
Bilateral impairment (\%) ${ }^{5}$	32.7	16.6	37.8	66.9	27.5	35.7	35.6	27.3	32.0	28.5		
Percent failing to hear 40dB tone at signal frequency $(\mathrm{Hz})^{6}$ In both ears												
500	18.1	8.9	19.9	40.8	13.4	20.2	22.3	13.5	17.9	18.6		
1000	27.1	13.7	30.9	56.3	23.2	29.3	29.1	23.3	26.1	22.8		
2000	22.0	9.1	24.9	52.4	16.7	23.7	28.2	16.5	20.9	21.9		
4000	41.5	23.9	47.8	76.6	34.2	44.8	47.4	34.1	40.9	39.8		
In one ear only												
500	14.4	12.3	13.9	22.1	17.7	12.2	13.8	17.6	11.9	12.2		
1000	18.7	16.9	20.2	19.8	21.8	16.2	18.9	21.6	16.1	18.6		
2000	16.9	13.5	19.1	20.9	17.4	16.2	17.8	17.5	15.6	16.2		
4000	21.0	22.6	21.6	14.5	25.9	17.4	20.8	25.2	18.2	22.2		

(Women's Health and Aging Study, physical assessment, 1992-1995)
${ }^{1}$ Descriptive statistics are based on weighted data.
${ }^{2}$ Adjusted using U.S. female population, 1992.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
${ }^{4}$ Participant was considered to be hearing impaired if she had (1) a $40-\mathrm{dB}$ loss at the $1000-$ or $2000-\mathrm{Hz}$ frequency in both ears or (2) a $40-\mathrm{dB}$ loss at the 1000 - and $2000-\mathrm{Hz}$ frequencies in one ear.
${ }^{5} 40-\mathrm{dB}$ loss at $1000-\mathrm{Hz}$ or $2000-\mathrm{Hz}$ in both ears.
${ }^{6}$ Two trials at each signal frequency.

15

Medication Use

Marco Pahor, Marcel E. Salive, S. Lori Brown

Medication use is an important consideration in studying the relationship between disease and disability. Drug therapy can substantially modify the risk and progression of conditions that cause disability. For example, the incidence of two major causes of disability-stroke and hip frac-ture-can be reduced by appropriate pharmacological treatment of systolic hypertension and osteoporosis, respectively (LaCroix et al., 1990; SHEP Cooperative Research Group, 1991; Storm et al., 1990). Also, treatment of congestive heart failure with angiotensin converting enzyme (ACE) inhibitors can decrease morbidity and improve survival, compared with conventional therapies (Pfeffer et al., 1992; SOLVD Investigators, 1992). Conversely, certain drugs can cause adverse reactions that, at least in some patients, may offset the beneficial effects and possibly aggravate prevalent diseases (Carbonin et al., 1991). For instance, digoxin toxicity is not uncommon and increases among the oldest old (Pahor et al., 1993), and continued use of cathartics may be associated with an increased risk of hypoalbuminemia (Pahor et al., 1994b), an important predictor of total and cardiovascular mortality (Corti et al., 1994).

Determining prescribed medications is also useful in epidemiologic research as an adjunct to self-report for determining disease presence and severity. Conditions such as angina, congestive heart failure, diabetes mellitus, chronic obstructive pulmonary disease, cancer, and Parkinson's disease are treated with specific prescription drugs.

This chapter describes the medications taken most frequently by participants in the Women's Health and Aging Study (WHAS) and provides several examples of how specific drugs may be related to health and functioning in older women. This information may be useful for planning further research on medication use in the older population.

Use of Prescription and Over-theCounter Drugs

Each participant was asked if she had taken any prescription or nonprescription medication in the past 2 weeks. If she answered yes, she was asked to present all medicine containers. The interviewer recorded the medication name, whether it was prescribed or over-the-counter (OTC), and the form, strength, and prescribed dosage. The interviewer also asked how much the participant actually took. If the medication container was not available, only the name, whether prescription or OTC, and the amount taken were ascertained. This method of medication ascertainment is similar to that used in other epidemiological studies (Pahor et al., 1994a) and has been demonstrated to be valid and reliable (Landry et al., 1988; Psaty et al., 1992). To facilitate data entry, all medications were coded according to a 7 -digit numerical code that identifies specific drug products, strengths, and forms. For analytical purposes, these drug product codes were converted into an 8 -digit numerical coding system that identifies specific
ingredients and four hierarchical levels of therapeutic and chemical categories (Pahor et al., 1994a).

Eighty-eight percent of these disabled women reported taking prescription medications during the 2 weeks before the baseline interview (Table 15.1). Medication use was slightly lower among the oldest old and slightly higher among women receiving help with activities of daily living (ADLs). Seventy-eight percent of the women reported taking nonprescription drugs. The rates of prescription medication use are slightly higher than those reported in the Established Populations for Epidemiologic Studies of the Elderly (EPESE; Chrischilles et al., 1992), which ranged from 68 to 78 percent of women. Chrischilles and colleagues reported that rates of prescription drug use were significantly higher among women limited in walking, climbing stairs, and performing heavy housework, ranging from about 80 to 90 percent. Rates of OTC drug use were similar in the WHAS and the EPESE. Nationally, in 1987, 84.5 percent of women age 65 years and older used prescription medications (Moeller and Mathiowetz, 1989).

Use of Specific Medications

Table 15.2 presents rates of medication use in the principal drug categories and according to ingredients, expressed as the percentage of participants taking these drugs. As expected, the most frequently taken medications are in the following categories: cardiovascular drugs, nonsteroidal anti-inflammatory drugs (NSAIDs), diuretics, and vitamins. The use of medications such as corticosteroids and anticoagulants, which may indicate the presence of a severe underlying disease, was about twice as frequent in WHAS participants as among a general older population (Pahor et al., 1994c). These partici-pant-based rates of use are lower than drugbased rates would be for two reasons. First, a participant may have taken more than one medication within a specific category. For example, a participant may have taken digoxin, nitroglycerin, and enalapril, which are all in the cardio-
vascular drug category. In fact, participants taking cardiovascular drugs averaged 1.8 medications per person in this category. Second, some medications contain two or more ingredients in combination (e.g., certain brands of antacids that contain both aluminum hydroxide and magnesium hydroxide, and cathartic medications that are a combination of ingredients).

Acetaminophen and aspirin were the most frequently taken drug ingredients (38.0 and 36.9 percent, respectively), and ibuprofen was the most frequently used NSAID after aspirin (11.6 percent). A positive aspect of this finding is that, among NSAIDs, ibuprofen has the lowest risk of severe adverse reactions such as gastrointestinal hemorrhage (Kaufman et al., 1993; Pahor et al., 1994c). Overall, 55 percent of participants used one or more NSAIDs. Opioid analgesics were also used relatively frequently (5.9 percent). Although aspirin may have been prescribed as a platelet antiaggregant for some participants, these findings show that pain relief was a major concern in the WHAS population.

Among cardiovascular drugs used for treating hypertension, calcium antagonists were the most frequently taken, followed by ACE inhibitors and beta-blockers. This pattern differs from that of a 1988 study, which found that beta-blockers were more commonly used for hypertension in older patients than calcium antagonists and ACE inhibitors (Pahor et al., 1995). Changes in drug use over time have been documented by longitudinal studies (Glynn et al., 1995; Manolio et al., 1995; Psaty et al., 1995), and this fact could have an impact on morbidity and mortality in the WHAS. The frequent use of nitrates (20.1 percent), indicates that about one out of five participants had treated angina.

Thyroid hormones were used relatively frequently (9 percent); it is unclear whether this high rate reflects clinical hypothyroidism or use of these drugs for other conditions. The use of thyroid hormones has been associated with an increased risk for osteoporosis (Schneider et al., 1994) and therefore might increase the incidence of hip fracture and aggravate disability.

A great deal of additional information is available in Table 15.2. Highlights of interest include:

- The rate of use of tamoxifen, a drug prescribed for breast cancer, was 1.6 percent.
- The rate of antiarrhythmic drug use was 1.9 percent.
- The rate of digoxin use was 13.5 percent.
- The rate of antilipemic (cholesterol-lowering) medication use was 8.6 percent
- The rate of benzodiazepine use was 8.8 percent.
- The rates of calcium supplement and vitamin D use were relatively low (4.1 and 3.1 percent, respectively).
- The rate of diuretic use was quite high (38.9 percent).
- The rates of use of oral hypoglycemic drugs and insulin were 8.7 and 4.8 percent, respectively.
- The rate of estrogen use was 7.7 percent.

Summary

Medication use among participants in the WHAS was high, with sufficient numbers to estimate rates for selected ingredients, the most common of which are shown in Table 15.2. The WHAS has the unique advantage of studying disabled older persons, who are usually excluded from large clinical trials because of their difficulty in making repeated visits to a clinic and complying with a demanding protocol. Evaluation of adverse and beneficial effects may help to clarify the potential impact of medication use on disability.

References

Carbonin PU, Pahor M, Bernabei R, Sgadari A. (1991). Is age an independent risk factor of adverse drug reactions in hospitalized medical patients? J Am Geriatr Soc 39:1093-1099.

Chrischilles EA, Foley DJ, Wallace RB, Lemke JH, Semla TP, Hanlon JT, Glynn RJ, et al. (1992). Use of medications by persons 65 and over: Data from the Established Populations for Epidemiologic Studies of the Elderly. J Gerontol Med Sci 47:M137-M144.

Corti MC, Guralnik JM, Salive ME, Sorkin JD. (1994). Serum albumin level and physical disability as predictors of mortality in older persons. JAMA 272:1036-1042.

Glynn RJ, Brock DB, Harris T, Havlik RJ, Chrischilles EA, Ostfeld AM, Taylor JO, et al. (1995). Use of antihypertensive drugs and trends in blood pressure in the elderly Arch Intern Med, in press.

Kaufman DW: Kelly JP, Sheehan JE: Laszlo A, Wiholm BĖ, Alfredsson L, Koff RS, et al. (1993). Nonsteroidal anti-inflammatory drug use in relation to major upper gastrointestinal bleeding. Clin Pharmacol Ther 53:185-494.

LaCroix AZ, W'ienpahl J, White LR, Wallace RB, Scherr PA, George LK, Cornoni-Huntley J, et al. (1990). Thiazide diuretic agents and the incidence of hip fracture. N'Engl J Med 322:286-290.

Landry JA, Smyer MA, Tubman JG, Lago DJ, Roberts J, Simonson W. (1988). Validation of two methods of data collection of self-reported medicine use among the elderly. Gerontologist 28:672-676.

Manolio TA, Cutler JA, Furberg CD, Psaty BM, Whelton PK, Applegate WB. (1995). Trends in pharmacologic management of hypertension in the United States. Arch Intern Med 155:829-837.

Moeller J, Mathiowetz N. (1989). Prescribed medicines: A summary of use and expenditures by Medicare beneficiaries. National Medical Expenditure Survey Research Findings No. 3, National Center for Health Services Research and Health Care Technology Assessment. DHHS Pub. No. (PHS) 89-3448. Rockville, MD: Public Health Service.

Pahor M, Guralnik JM, Gambassi G, Bernabei R, Carosella L, Carbonin PU. (1993). The impact of age on the risk of adverse drug reactions to digoxin. J Clin Epidemiol 46:1305-1314.

Pahor M, Chrischilles EA, Guralnik JM, Brown SL, Wallace RB, Carbonin PU. (1994a). Drug data coding and analysis in epidemiologic studies. Eur J Epidemiol 10:405-411.

Pahor M, Guralnik JM, Chrischilles EA, Wallace RB. (1994b). Use of laxative medication in older persons and associations with low serum albumin. J Am Geriatr Soc 42:50-56.

Pahor M, Guralnik JM, Salive ME, Chrischilles EA, Wallace RB. (1994c). Disability and severe gastrointestinal hemorrhage: A prospective study of community dwelling older persons. J Am Geriatr Soc 42:816-825.

Pahor M, Guralnik JM, Corti C, Foley DJ, Carbonin PU, Havlik RJ. (1995). Long term survival and use of antihypertensive medications in older persons. J Am Geriatr Soc, in press.

Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ, Cuddy TE, Davis BR, et al. (1992). Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med 327:669-677.

Psaty BM, Koepseil TD, Yanez ND, Smith NL, Manolio TA, Heckbert SR, Borhani NO, et al. (1995). Temporal patterns of antihypertensive medication use among older adults, 1989 through 1992: An effect of the major clinical trials on clinical practice? JAMA 273:1436-1438.

Psaty BM, Lee M, Savage PJ, Rutan GH, German PS, Lyles M for the CHS Collaborative Research Group. (1992). Assessing the use of medications in the elderly: Methods and initial experience in the Cardiovascular Health Study. J Clin Epidemiol 45:683-692.

Schneider DL, Barrett-Connor EL, Morton DJ. (1994). Thyroid hormone use and bone mineral density in elderly women: Effects of estrogen. JAMA 271:1245-1249.

SHEP Cooperative Research Group. (1991). Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA 265:3255-3264.

SOLVD Investigators. (1992). Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 327:685-691.

Storm T, Thamsborg G, Steiniche T, Genant HK, Sorensen OH. (1990). Effect of intermittent cyclical etidronate therapy on bone mass and fracture rate in women with postmenopausal osteoporosis. N Engl J Med 322:1265-1271.

Table 15.1: Percent Using Prescription and Over-the-Counter Drugs ${ }^{1}$

Medication Use	$\begin{gathered} \text { Total } \\ (\mathrm{N}=1002) \\ \hline \end{gathered}$	Age Group			Disability Level		
		$\begin{gathered} 65-74 \\ (N=388) \\ \hline \end{gathered}$	$\begin{gathered} 75-84 \\ (N=311) \\ \hline \end{gathered}$	$\begin{gathered} 85+ \\ (\mathrm{N}=303) \end{gathered}$	$\begin{aligned} & \text { Moderate }{ }^{2} \\ & (\mathrm{~N}=343) \end{aligned}$	ADL Difficulty	
						Receives No Help $(N=478)$	$\begin{aligned} & \text { Recerves } \\ & \text { Help } \\ & (N=181) \end{aligned}$
Do you have any medicines prescribed by a doctor that you have taken or used in the past 2 weeks? Yes	88.0	88.4	88.4	85.6	86.9	87.8	90.6
During the past two weeks, did you take any medicine not prescribed by a doctor? Yes	77.8	76.6	79.7	75.8	77.4	79.9	72.7

[^7]Table 15.2: Medications Taken by Participants ${ }^{1,2}$

Therapeutic or Chemical Category	Most Frequent Drug Ingredients (Percent)	Percent
Antigout	Allopurinol (1.1), colchicine (1.0), probenecid (0.4)	2.1
Antihistamines	Diphenhydramine (2.8), chlorpheniramine (1.6)	9.0
Antiinfectives		11.9
Antibiotics	Neomycin (1.3), amoxicillin (0.9), polymyxin-B (0.9)	6.3
Antimalarials	Quinine (2.5), hydroxychloroquine (0.4)	2.9
Other (antiviral, urinary)	Sulfamethoxazole (1.2), amantadine (0.6), sulfacetamide (0.4)	3.6
Antineoplastic	Tamoxifen (1.6), methotrexate (0.3)	2.4
Autonomic		33.8
Parasympathomimetic	Pilocarpine (2.6), pyridostigmine (0.1)	3.0
Parasympatholytic	Ipratropium bromide (3.9), atropine (1.9)	7.6
Sympathomimetic	Albuterol (4.7), pseudoephedrine (1.6)	8.9
Sympatholytic		20.9
Beta-blockers	Atenolol (6.4), timolol oph. (3.7), metoprolol (3.4), propranolol (1.6)	18.6
Alpha-blockers	Terazosin (0.8), prazosin (0.5)	1.3
Muscle relaxants	Cyclobenzaprine (0.4), methocarbamol (0.4), baclofen (0.2)	1.1
Blood formation and coagulation		19.5
Antianemia	Iron preparations (14.8)	14.8
Anticoagulants	Warfarin (5.3)	5.3
Cardiovascular		58.4
Cardiac		14.5
Antiarrhythmic	Quinidine (0.9), flecainide (0.3)	1.9
Glycosides	Digoxin (13.5)	13.5
Antilipemic	Lovastatin (4.8), pravastatin (1.7), gemfibrozil (1.0), cholestyramine (0.5)	8.6
Hypotensive ACE-inhibitors		20.4
ACE-inhibitors	Enalapril (5.9), lisinopril (4.9), captopril (4.8), ramipril (0.7), benazepril (0.6), quinapril (0.5)	17.3
Other	Clonidine (1.4), methyldopa (1.0), reserpine (0.7)	3.6
Vasodilators		39.9
Nitrates	Nitroglycerin (15.7), isosorbide dinitrate (6.4), isosorbide mononitrate (0.6)	20.1
Calcium channel blockers	Nifedipine (9.7), diltiazem (8.2), verapamil (7.8), nicardipine (1.0)	28.0
Central nervous system		82.3
NSAID	Aspirin (36.9), ibuprofen (11.6), naproxen (3.8), nabumetone (2.2)	55.0
Opioid analgesics	Propoxyphene (4.4), oxycodone (1.7)	5.9
Analgesics and antipyretics	Acetaminophen (38.0)	39.6
Anticonvulsants	Phenobarbital (1.1), phenytoin (0.8)	1.9
Antidepressants	Amitriptyline (2.2), nortriptyline (1.7)	7.7
Benzodiazepines	Alprazolam (2.1), lorazepam (1.9), temazepam (1.3)	8.8
Dopaminergic	Levodopa (1.4)	1.4
Other	Caffeine (3.8)	7.1
Drugs affecting electrolytes		51.1
Replacements	Potassium (16.2), trace elements (12.0), calcium (4.1)	29.4
Diuretics		38.9
Low-ceiling	Hydrochlorothiazide (17.0)	19.3
Loop	Furosemide (17.2), burnetadine (1.8)	18.9
Other	Triamterene (7.7), spironolactone (0.9)	10.1
Other	Sodium bicarbonate (0.9), lactulose (0.5)	2.8
Gastrointestinal		42.6
Antacids	Calcium carbonate (8.1), magnesium hydroxide (7.0), aluminum hydroxide (5.8)	17.8
Cathartics	Docusate (6.6), phenolphthalein (3.6)	12.8
Antiulcer	Ranitidine (8.3), omeprazole (1.5), cimetidine (1.5)	14.5
Other	Psyllium (5.6), simethicone (4.4)	15.7

(Continued)

Therapeutic or Chemical Category	Most Frequent Drug Ingredients (Percent)	Percent
Hormones		34.4
Corticosteroids	Prednisone (4.3), hydrocortisone topical (1.6), prednisolone (1.6). triamcinolone (1.0), dexamethasone (1.2)	9.6
Estrogens	Conjugated estrogens (6.2)	7.7
Antidiabetic		13.3
Insulins	Insulin (4.8)	4.8
Sulfonylureas	Glyburide (6.0), glipizide (1.7)	8.7
Progestogens	Medroxyprogesterone (1.5)	1.6
Thyroid gland		9.6
Thyroid agents	Levothyroxine (8.5), thyroid (0.6)	9.0
Antithyroid agents	Propylthiouracil (0.3)	0.4
Bronchial spasmolytics	Theophylline (4.9), oxybutynin (1.5)	6.5
Skin and mucous membrane agents	Beclomethasone (3.9), methyl salicylate (1.6)	10.6
Vitamins	Multivitamin preparation (19.1), vitamin C (8.1), vitamın B (6.7), vitamin E (6.1), vitamin D (3.1)	29.2

(Women's Health and Aging Health, baseline interview, 1992-1995)
${ }^{1}$ Information on medication use is missing for less than 3\%. Results are based on non-missing information.
${ }^{2}$ A. Do you have any medicines prescribed by a doctor that you have taken or used in the past 2 weeks? Please include insulin and eye drops if you use them.
B. We are also interested in other medicines not prescribed by a doctor such as: aspirin, Tylenol, Bufferin, Anacin, headache pills or pain killers, laxatives, bowel medıcine, cold medıcıne, cough medıcıne, sleep medıcine, antacids or stomach medicines, vitamins, ointments, salves, or eye drops, or any other medicines from the drug store. During the past two weeks, did you take any medicine not prescribed by a doctor?
C. May I see the medicine bottles, containers or bags for all of the medicines that you have taken or used in the last two weeks? Please include medicine prescribed by a doctor and medicine not prescribed by a doctor. Please remember to include insulin and eye drops if you use them.

Hematologic, Biochemical, and Hormonal Characteristics

Jeff D. Williamson, Patricia Maloney, Elizabeth A. Skinner, M. Chiara Cortỉ, Frederick L. Brancati, Paul W. Ladenson, Jack M. Guralnik, Linda P. Fried

Abstract

The Women's Health and Aging Study (WHAS) includes an ancillary study of selected biochemical, hematological, and hormonal markers that might be associated with higher levels of disability. This portion of the WHAS involved collection of blood samples from all participants who consented, after completion of their baseline evaluations. Approximately 75 percent of women enrolled in the study completed the phlebotomy at baseline. Venipuncture was performed in the home by a certified phlebotomist following a standardized protocol. Blood samples were obtained in a non-fasting state. Processing and aliquoting were carried out in the Core Genetics Laboratory of The Johns Hopkins University School of Medicine. Samples were shipped to the central laboratory of Corning Clinical Laboratories (formerly MetPath) in Teterboro, New Jersey, for analysis.

In this chapter, we describe selected baseline laboratory results focusing on commonly performed and basic biochemical and hematologic health status indices.

Measures of Protein Status and Nutrition

Serum albumin levels are, in general, a reliable indicator of visceral protein status in older
persons (Mobarhan and Trumbore, 1991), and studies have shown that low levels of albumin are predictive of increased morbidity and mortality (Agarwal et al., 1988; Corti et al., 1994; Rudman et al., 1987). In the WHAS cohort, 4 percent of all participants had low levels of serum albumin (less than $3.5 \mathrm{gm} / \mathrm{dL}$; Table 16.1). When evaluated by age group and level of disability, the proportion of women with low albumin was higher in the oldest age group and among women with the most severe disability. Specifically, the proportion of women with hypoalbuminemia was more than three times higher in women receiving help with activities of daily living (ADLs) compared with women classified as moderately disabled (7.2 versus 2.2 percent). Table 16.1 also shows that the proportion of women receiving help in ADLs who had low-normal serum albu$\mathrm{min}(3.5$ to $3.8 \mathrm{gm} / \mathrm{dL}$) was nearly twice that of the moderately disabled group (37 versus 17 percent).

Serum cholesterol in older adults is another measure of nutritional status and general health and may be a risk factor for cardiovascular disease among older adults. For many biologic measures, associations with adverse outcomes tend to be U -shaped, that is, with increased risk at the lower as well as the upper ranges. This appears to be the case with cholesterol: higher levels of morbidity and mortality are associated with levels below approximately $160 \mathrm{mg} / \mathrm{dL}$ and above approximately $240 \mathrm{mg} / \mathrm{dL}$ (Jacobs et al.,
above approximately $240 \mathrm{mg} / \mathrm{dL}$ (Jacobs et al., 1992). Previous studies, particularly of individuals in acute and chronic care settings, have shown associations between low serum cholesterol and such adverse outcomes as mortality, iatrogenic complications, poor recovery from illness, and higher cost and duration of medical care (Jacobs et al., 1992; Noel et al., 1991; Rudman et al., 1988). Low serum cholesterol has also been identified as a marker for increased risk of cancer (Kritchevsky et al., 1991). On the other hand, elevated serum cholesterol has been widely associated with increased risk of cardiovascular disease in young and middle-aged adults (Stamler et al., 1986) and possibly in older adults (Corti et al., 1995; Harris et al., 1987).

Total cholesterol was measured by enzymatic methods. As with albumin, the proportion of women in the WHAS with lower levels of cholesterol was greatest in the oldest age group and in those with the most severe disability. Overall, 4 percent of these disabled women had serum cholesterol levels below $160 \mathrm{mg} / \mathrm{dL}$. Stratified by age, 8 percent of women over age 85 had serum cholesterol levels below $160 \mathrm{mg} / \mathrm{dL}$ compared with 3 percent of women age 65 to 74 years. Thirty-nine percent of women age 85 years and older had cholesterol levels less than $200 \mathrm{mg} / \mathrm{dL}$, compared with 22 percent of women age 65 to 74 years. The association between low cholesterol and disability level was less clear in this cohort of moderately to severely disabled women. Approximately one-third of women in every age and disability category had cholesterol levels over $239 \mathrm{mg} / \mathrm{dL}$.

High-density lipoprotein cholesterol (HDL-C) level, like total cholesterol, is associated with morbidity and mortality. Epidemiologic evidence has shown that within a population group, HDLC level is strongly and inversely correlated with the risk of cardiovascular disease (Corti et al., 1995; Kannel, 1987; Stampfer et al., 1991). Levels of HDL-C in older persons have recently been associated with such modifiable risk factors as
obesity, use of certain medications, and glucose tolerance (Ettinger et al., 1992).

Table 16.1 displays the HDL-C levels, determined using phosphotungstic precipitation and enzymatic cholesterol, for the WHAS population. The cut-points for total and HDL cholesterol levels were selected according to the guidelines of the National Cholesterol Education Program (Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults, 1994). HDL-C levels below $35 \mathrm{mg} / \mathrm{d} \mathrm{L}$ are considered abnormal; levels above 60 are most clearly associated with reduced incidence of cardiovascular disease. Unlike total cholesterol, mean HDLC level did not differ among the age groups. However, as with total cholesterol, the mean HDL-C level was noticeably lower in the most disabled group. A higher proportion of those receiving help with ADLs had low HDL-C compared with those with moderate disability (14 percent versus 5 percent). Additionally, in comparison with those with moderate disability, a much lower proportion of women in the highest disability group were found to have high levels of HDL-C (20 percent versus 36 percent).

Hematologic Measures

Hematopoiesis, the process of producing blood cells, is one of a number of biologic systems in which an attenuation in production is noted with increasing age or under stressful circumstances. Although several studies have shown that there is no difference in the baseline hematopoietic function of carefully selected healthy old and young adults (Garry et al., 1981; Lipschitz et al., 1984), the process of hematopoiesis and its various components are highly vulnerable to stress and disease in older adults. One aspect of he-matopoiesis-erythropoiesis (red blood cell for-mation)-can be dampened by a wide variety of stressors such as malnutrition, inflammation, and chronic disease (Dallman et al., 1984; Lipschitz, 1994; Lipschitz and Mitchell, 1982).

Hemoglobin is the protein in the red blood cells that transports oxygen throughout the body. Anemia, the condition in which the number of red blood cells and the concentration of hemoglobin in blood is below normal, is the primary manifestation of diminished erythropoietic function. Blood loss, chronic disease, and inflammation are the most common causes of anemia and low hemoglobin in older adults (Lipschitz, 1994). Hemoglobin was measured by spectrophotometry. Table 16.1 displays the hemoglobin levels for participants in the WHAS. A hemoglobin value below $12.0 \mathrm{gm} / \mathrm{dL}$ is considered to be low and suggests anemia. In the WHAS, approximately 20 percent of these disabled women had low hemoglobin, including 18 percent of those age 65 to 74 years and 29 percent of those age 85 years and older. The proportion of women who were anemic did not differ by level of disability. From 1 to 3 percent of women in all age and disability categories had levels of hemoglobin consistent with severe anemia (hemoglobin less than 10.0 $\mathrm{gm} / \mathrm{dL}$).

The mean corpuscular volume (MCV) is another component of the complete blood count that, in clinical practice, is routinely obtained. The reference range for MCV is approximately 83 to 103 femtoliters (fL). The MCV is a precise, accurate measure that can be used to differentiate among the various etiologies of anemia. Thus, anemia can be classified as microcytic (MCV below 83 fL), normocytic (MCV 83 to 103 fL), or macrocytic (MCV greater than 103 fL). By far the most common cause of microcytic anemia in older adults is iron deficiency as a result of bleeding, usually gastrointestinal. Dietary factors, such as poor dietary intake of folate and diminished intestinal absorption of vitamin B12, are important in the etiology of macrocytic anemia (Davidson and Hamilton, 1978). Other significant causes of macrocytic anemia are liver disease and acquired disorders of bone marrow stem cells (Koeffler and Golde, 1980). Normocytic anemia is associated with a variety of conditions, including such chronic diseases as renal failure and rheumatoid arthritis (Cartwright, 1966).

Table 16.1 shows the MCV distribution for women in the WHAS with and without anemia. The majority of participants with low hemoglobin levels (hemoglobin $<12 \mathrm{gm} / \mathrm{dL}$) were found to have normocytic anemia. However, 23 percent were classified as having microcytic anemia and 6 percent macrocytic anemia. Stratified by age, a noticeably smaller proportion of women with anemia age 85 years and older were found to have microcytic anemia compared with women age 65 to 74 years (14 percent versus 27 percent). The proportion of anemic women with microcytic anemia did not differ by level of disability. Again, as with the general nutritional and health status measures albumin and cholesterol, a much higher proportion of women in the oldest and most disabled groups was found to have macrocytic anemia. Table 16.1 also shows that, even in women without anemia, there was a trend toward a higher MCV with increasing level of disability.

Measures of Glucose Mefabolism

Carbohydrate metabolism is another area in which attenuation in homeostatic control often occurs with aging. A number of studies have demonstrated a progressive, age-associated decline in glucose tolerance (Andres, 1971; Davidson, 1979; Shimokata et al., 1991). This alteration in ability to metabolize energy is believed by many to be a marker for frailty and age-associated decline in health measures.

In the WHAS, 21 percent of these disabled women reported being diagnosed by a physician as having diabetes (Chapter 9, Table 9.1). In comparison, the National Health and Nutrition Examination Survey and other investigators report that approximately 10 percent of people over the age of 65 have been diagnosed as having diabetes; among those age 85 years and older, 25 percent have this diagnosis (Bennett, 1984; Harris et al., 1987; Wilson, 1980). It is known, however, that 50 percent of cases of diabetes are undiagnosed (Harris et al., 1987). Therefore, the

WHAS self-reports may be underestimates. Consistent with this possibility, high levels of serum glucose were prevalent among WHAS par. ticipants who did not have a history of diabetes. Serum glucose level was assessed using glycohemoglobin, a measure of mean serum glucose over a 3 -month period, measured by liquid chromatography. Table 16.1 shows that 30 percent of the women who had no history of diabetes had elevated glycohemoglobin levels above 8 percent (normal $=6$ to 8 percent). This proportion did not vary substantially by age or disability level.

Recent studies in insulin-dependent diabetes mellitus have demonstrated that better control of blood glucose slows the progression of the complications associated with diabetes (l)iabetes Control and Complications Trial Research Group, 1993). However, by far the most common form of diabetes in older adults is non-insulin dependent diabetes mellitus. Among WHAS participants, 44 percent of women reporting diabetes were found to have markedly elevated glycohemoglobin levels, indicating increased risk for complications. The proportion of diabetics with poor glucose control was considerably lower in women with diabetes age 85 years and older compared with the younger women. This finding might reflect a change in the nature of diabetes at advanced age, that is, more people developing mild diabetes with age or those with diabetes requiring less intensive treatment. There is also likely a survival effect, resulting from higher mortality among those with the most severe dia. betes.

Thyroid Function

The belief that deficiency in hormonal (endocrine) function has a role in age-associated decline in homeostasis and function has had proponents for more than a hundred years (Brown-Sequard, 1889). Because of the relative frequency of diseases affecting thyroid function in older adults (Rae et al., 1993), thyroid function was assessed in the WHAS participants by se-
rum thyrotropin (thyroid stimulating hormone, TSH; measured by immunoassay) and by thyroxine (T4; measured by chemiluminescence assays). TSH, secreted by the pituitary gland, is responsible for a number of thyroid-associated functions, including hormone synthesis, thyroid gland growth, and release of thyroid hormones. Thyroxine, in turn, is the primary hormone produced by the thyroid gland, and its measurement is important to detect overt thyroid dysfunction. In addition, certain subtle derangements of thyroid gland function can be recognized only by serum TSH measurement. In so-called subclinical hypothyroidism, in which serum TSH is elevated in the presence of a normal serum free thyroxine, higher incidences of subsequent overt hypothyroidism ('Tunbridge et al., 1977), associated hypocholesterolemia (Arem and Patsch, 1990), and nonspecific symptoms of thyroid hormone deficiency (Cooper et al., 198.1) have been reported. On the other hand, in subclinical hyperthyroidism, in which serum TSH level is low despite normal serum free thyroxine, higher risks of atrial fibrillation (Sawin et al., 1991) and decreased bone mineral density (Stall et al.. 1990) have been described in older persons. Because both a variety of nont hyroidal illnesses and malnutrition can alter tests of thyroid function, the specificity of low serum thyroxine and TSH levels is relatively low in ill persons, particularly those requiring hospitalization. Therefore, in chronically ill populations, the specificity of a single abnormal thyroxine or TSH value for primary thyroid disease is relatively low.

TSH levels were abnormal in 14 percent of the WHAS cohort; 5.6 percent had low levels of measured TSH and 8.5 percent had elevated measures (Table 16.1). The mean level did not differ by age group but increased with severity of disability. Specifically, 16 percent of women who received help with ADLs had elevated TSH, while only 7 percent of moderately disabled women had elevated TSH.

For the total WHAS cohort, 7 percent of participants had levels of thyroxine outside the ref-
erence range. Of these, Table 16.1 shows that 2 percent had elevated levels and 5 percent had depressed levels of measured thyroxin. By age group, mean thyroxine was lower for women age 85 years and older compared with those age 65 to 74 years. Similarly, the proportion of women age 85 years and older with low levels of measured thyroxine was somewhat higher than that in the 65 to 74 age group (9 percent versus 6 percent). Lower levels of measured T4 were noted among women who received help with ADLs compared with the less disabled groups.

As noted above, there was a low prevalence of elevated thyroxine in this population. In fact, almost no women in the oldest age group and the highest disability classification in Table 16.1 had high levels of measured thyroxine.

Creatinine

Serum creatinine is a measure of renal function. The production of creatinine, derived from muscle metabolism, increases as muscle mass increases. Hence, creatinine production generally increases during the first two decades of life and begins to decline during the fifth decade of life as muscle mass begins to decline. However, a concomitant decline in glomerular filtration rate (GFR) with age in healthy individuals tends to offset the decrease in creatinine production to the extent that little change in serum creatinine level is seen in healthy older adults. In general, serum creatinine levels above $1.4 \mathrm{mg} / \mathrm{dL}$ are considered abnormal. However, it has been pointed out that this commonly used cutoff could miss renal insufficiency in small older women; for example, estimated GFR (Cochroft-Gault) for a 60 kg woman with a serum creatinine of 1.2 is approximately $30 \mathrm{cc} / \mathrm{minute}$ (Lemann et al., 1990). Overall, approximately 9 percent of WHAS participants had serum creatinine levels above $1.4 \mathrm{mg} / \mathrm{dL}$. Mean serum creatinine did not vary across age groups or disability classifications. Nor did the proportion of individuals with high levels of serum creatinine vary greatly by
age (7 percent of women age 65 to 74 years, versus 10 percent of those 85 years and older) or disability levels (8 to 9 percent). Twelve percent of participants had serum creatinine levels between 1.2 and $1.4 \mathrm{mg} / \mathrm{dL}$.

References

Agarwal N, Acevedo F, Leighton, LS, Cayten CG, Pitchumoni CS. (1988). Predictive ability of various nutritional variables for mortality in older people. Am J Clin Nutr 48:1173-1178.

Andres R. (1971). Aging and diabetes. Med Clin North Am 55:835-852.

Arem N, Patsch W. (1990). Lipoprotein and apolipoprotein levels in subclinical hypothyroidism. Arch Intern Med 150:2097-2100.

Bennett PH. (1984). Diabetes in the elderly: Diagnosis and epidemiology. Geriatrics 39:37-41.

Brown-Sequard CE. (1889). Des effects produits chez l'homme par des injections sous-cutanees d'un liquid retire des testicules frais de cobayes et de chiens. Comptes Rend Soc Biol 41:415-422.

Cartwright GE. (1966). The anemia of chronic disorders. Semin Hematol 17:164-176.

Cooper DS, Halpern R, Wood LC, Levin AA, Ridgway EC. (1984). L-thyroxine therapy in subclinical hypothyroidism: A double-blind, pla-cebo-controlled trial. Ann Intern Med 101:18-24.

Corti MC, Guralnik JM, Salive ME, Sorkin JD. (1994). Serum albumin level and physical disability as predictors of mortality in older persons. JAMA 272:1036-1042.

Corti MC, Guralnik JM, Salive ME, Harris T, Field TS, Wallace RB, Berkman LF, et al. (1995). HDL-cholesterol predicts coronary heart disease mortality in older persons. JAMA 274:538-544.

Dallman PR, Yip R, John SC. (1984). Prevalence and causes of anemia in the United States, 1976 to 1980. Am J Clin Nutr 39:437-445.

Davidson MB. (1979). The effect of aging on carbohydrate metabolism: A review of the English literature and a practical approach to the diagnosis of diabetes mellitus in the elderly. Metabolism 28:688-705.

Davidson RJL, Hamilton PJ. (1978). High mean red cell volume: Its incidence and significance in routine hematology. J Clin Pathol 31:493-505.

Diabetes Control and Complications Trial Research Group. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insu-lin-dependent diabetes mellitus. N Engl J Med 329:977-986.

Ettinger WH, Wahl PW, Kuller LH, Bush TL, Tracy RP, Manolio TA, Borhani NO, et al. for the CHS Collaborative Research Group. (1992). Lipoprotein lipids in older people. Results from the Cardiovascular Health Study. Circulation 3:858-869.

Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II). (1994). Second Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II). Circulation 89:1329-1445.

Garry PJ, Goodwin JS, Hunt WC. (1983). Iron status and anemia in the elderly: New findings and a review of previous studies. J Am Geriatr Soc 31:389-399.

Harris MI, Hadden WC, Knowler WC, Bennett PH. (1987). Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in U.S. population aged $20-74$ years. Diabetes 36:523-534.

Jacobs D, Blackburn H, Higgins M, Reed D, Iso H, McMillan G, Neaton J, et al. (1992). Report of a conference on low blood cholesterol: Mortality associations. Circulation 86:1046-1060.

Kannel WB. (1987). Prevention of cardiovascular disease in the elderly. J Am Coll Cardiol 10:25A.

Koeffler HP, Golde DW. (1980). Human preleukemia. Ann Int Med 93:347-356.

Kritchevsky SB, Wilcosky TC, Morris DL, Truong KN, Tyroler HA. (1991). Changes in plasma lipid and lipoprotein cholesterol and weight prior to the diagnosis of cancer. Cancer Res 51:3198-3203.

Lemann J, Bidani AK, Bain RP, Lewis EJ, Rohde RD. (1990). Use of serum creatinine to estimate glomerular filtration rate in health and early diabetic nephropathy. Am Jidney Dis 16:236243.

Lipschitz DA, Mitchell CO. (1982). The correctability of the nutritional, immune, and hematopoictic manifestations of protein caloric malnutrition in the elderly. J Am Coll Nutr 1:1725.

Lipschitz DA, Milton KY, Thompson CO. (1984). Effect of age on hematopoiesis in man. Blood 63:502-509.

Lipschitz DA. (1994). Anemia in the elderly. In: Hazzard WR, Bierman EL, Blass JP, Ettinger WH, Halter JH, eds. Principles of Geriatric Medicine and Gerontology. New York: McGraw Hill.

Mobarhan S, Trumbore LS. (1991). Nutritional problems of the elderly. Clin Geriatr Med 7:191-214.

Noel MA, Smith TK, Ettinger WH. (1991). Characteristics and outcomes of hospitalized older patients who develop hypocholesterolemia. J Am Geriatr Soc 39:455-461.

Rae P, Farrar J, Beckett G, Toft A. (1993). Assessment of thyroid status in elderly people. $B r$ Med J 307:177-180.

Rudman D, Mattson DE, Nagraj HS, Feller AG, Jackson DL, Caindec N, Rudman IW. (1988). Prognostic significance of serum cholesterol in nursing home men. J Parenter Enteral Nutr 12:155-158.

Rudman D, Feller AG, Nagraj HS, Jackson DL, Rudman IW, Mattson DE. (1987). Relation of serum albumin concentration to death rate in nursing home men. J Parenter Enteral Nutr 11:360-363.

Sawin CT, Geller A, Wolf PA, Belanger AJ, Baker E, Bacharach P, Wilson PW, et al. (1994). Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N Engl J Med 331:1249-1252.

Shimokata H, Muller DC, Fleg JL, Sorkin JD. (1991). Age as independent determinant of glucose tolerance. Diabetes 40:44-51.

Stall, GM, Harris S, Sokoll LJ, Dawson-Hughes B. (1990). Accelerated bone loss in hypothyroid patients overtreated with L-thyroxine. Ann Intern Med 113:265.

Stamler J, Wentworth D, Neaton JD. (1986). Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? JAMA 256:2823-2828.

Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH. (1991). A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med 325:373-381.

Tunbridge WMG, Evered DC, Hall R, Appleton D, Brewis M, Clark F, Evans JD, et al. (1977). Lipid profiles and cardiovascular disease in the Whickham area with particular reference to thyroid failure. Clin Endocrinol 7:495-508.

Wilson PNF. (1980). Epidemiology of diabetes in the elderly: The Framingham Study. Am J Med (Suppl 15A:3-10, 1982).

Table 16.1: Distribution (Percent) of Laboratory Blood Test Results ${ }^{1}$

Test Result ${ }^{2}$	Total	Age Group			Disability Level		
		65-74	75-84	$85+$	Moderate ${ }^{3}$	ADL Difficulty	
						Receives No Help	Receives Help
Albumin (gm/dL) ($\mathrm{N}=697$)							
Mean	4.0	4.1	4.0	4.0	4.1	4.1	3.9
<3.5	3.0	3.0	2.6	4.2	2.2	2.1	7.2
3.5-3.8	22.0	20.6	21.9	27.8	17.0	20.6	37.3
3.9-4.2	51.7	49.2	56.1	47.1	55.7	53.2	38.5
>4.2	23.3	27.3	19.5	20.8	25.1	24.2	17.0
Cholesterol ($\mathrm{mg} / \mathrm{dL}$) ($\mathrm{N}=700$)							
Mean	225.4	228.8	224.1	216.6	226.8	226.8	218.0
< 160	3.7	2.6	3.8	7.5	2.9	4.4	3.6
160-199	22.4	19.0	23.8	31.0	23.2	20.0	27.8
200-239	41.8	45.5	40.5	31.8	42.5	42.3	38.7
> 239	32.1	32.9	31.8	29.7	31.4	33.3	29.9
HDL cholesterol (mg/dL) ($\mathrm{N}=708$)							
35-59	61.3	61.5	60.3	63.7	59.4	61.1	66.4
>59	31.2	29.4	34.1	28.7	35.5	31.8	20.1
Hemoglobin (gm/dL) ($\mathrm{N}=682$)							
<10.0	2.0	1.4	2.3	3.2	1.6	2.3	2.0
10.0-11.9	17.7	16.3	17.0	25.6	19.2	15.6	20.6
12.0-13.0	29.0	29.2	28.6	29.3	27.4	28.8	32.9
>13	51.4	53.1	52.1	42.0	51.9	53.3	44.5
Mean corpuscular volume (fL) in those with anemia (hemoglobin $<12.0 \mathrm{gm} / \mathrm{dL})(\mathrm{N}=146)$							
Mean	90.2	89.4	89.4	93.7	89.4	91.1	89.8
<83	22.6	22.6	26.7	13.6	26.6	18.7	23.2
83-103	72.0	75.3	66.8	75.6	69.5	76.7	66.0
>103	5.5	2.1	6.5	10.8	3.9	4.6	10.8
Mean corpuscular volume (fL) in those without anemia ($N=536$)							
Mean	94.0	94.0	94.0	94.2	93.8	94.2	94.0
<83	3.3	2.1	4.1	5.1	4.3	1.9	4.9
83-103	93.5	94.8	92.4	92.4	93.1	95.3	89.1
>103	3.2	3.1	3.5	2.5	2.6	2.8	6.0
Glycohemoglobin (percent) in those reporting diabetes ($\mathrm{N}=129$)							
<6.0	0.2	0.0	0.8	8.6	0.8	0.0	0.8
6.0-8.0	18.1	13.4	22.2	29.1	13.6	17.8	24.0
8.0-10.0	37.3	41.4	31.6	43.8	47.3	33.6	29.5
>10.0	44.4	45.0	46.2	22.6	39.2	48.6	45.7
Glycohemoglobin (percent) in those reporting no diabetes ($\mathrm{N}=532$)							
Mean	7.7	7.8	7.6	7.7	7.6	7.8	7.6
<6.0	2.7	2.0	3.9	1.4	3.1	1.4	6.6
6.0-8.0	67.1	67.4	66.9	66.1	67.8	67.0	65.0
8.0-10.0	28.9	28.4	28.4	31.7	26.9	30.4	28.4
>10.0	1.4	2.2	0.7	0.8	2.2	1.2	0.0
TSH ($\mu \mathrm{U} / \mathrm{L}$) ($\mathrm{N}=693)$							
Mean	2.5	2.4	2.4	2.5	2.2	2.5	3.1
<0.4	5.6	6.4	3.9	7.7	7.5	3.7	6.7
0.4-5.0	86.0	84.6	88.5	82.9	85.6	89.1	77.5
>5.0	8.5	9.0	7.5	9.5	6.9	7.2	15.9

(Continued)

Test Result ${ }^{2}$	Total	Age Group			Disability Level		
		65-74	75-84	$85+$	Moderate ${ }^{3}$	ADL Difficulty	
						Receives No Help	Receives Help
Thyroxin ($\mu \mathrm{g} / \mathrm{dL}$) ($\mathrm{N}=698$)							
Mean	7.4	7.5	7.5	7.1	7.5	7.5	7.1
<5.0	5.2	5.8	3.2	9.3	5.2	4.5	7.5
5.0-12.0	92.7	91.2	95.3	90.2	92.1	93.3	92.6
> 12.0	2.1	3.0	1.5	0.5	2.8	2.2	0.0
Creatinine ($\mathrm{mg} / \mathrm{dL}$) ($\mathrm{N}=699$)							
Mean	1.1	1.1	1.1	1.1	1.1	1.1	1.1
<0.9	18.7	23.0	15.3	13.5	14.6	20.4	23.1
.9-1.2	61.2	59.3	62.3	64.5	62.6	61.2	58.1
>1.2-1.4	11.6	10.9	12.3	12.1	14.5	10.1	9.5
>1.4	8.5	6.8	10.0	9.9	8.4	8.3	9.3

(Women's Health and Aging Study, 1992-1995)
${ }^{1}$ Reported N's are based on unweighted data. Other descriptive statistics are based on weighted data.
${ }^{2}$ Categories for each item may not add up to 100% due to rounding.
${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).

Appendix A

Sample Design, Weighting and Estimation Procedures, and Computation of Sampling Errors

Adam Chu, Carla E. Maffeo, Annie Lo, David Morganstein, Karen J. Bandeen-Roche, Judith D. Kasper, Dwight B. Brock

Sample Design

The sampling frame for the Women's Health and Aging Study (WHAS) was restricted to Medicare beneficiaries residing in 12 Zip Code areas in and adjoining the city of Baltimore, Maryland. Four nonoverlapping probability samples, spaced approximately 6 months apart, were selected over a 2 year period. These four samples are referred to as "replicates" and are denoted by number in this appendix (i.e., replicate 1, replicate 2, etc.). The sample design for each replicate of the WHAS can be described as a stratified random sample of female Medicare beneficiaries with primary strata defined by the following three age groups: (1) 65 to 74 years; (2) 75 to 84 years; and (3) 85 years and older.

The sampling frame of Medicare beneficiaries in the target population was constructed from current Health Care Financing Administration (HCFA) files. To facilitate sample selection and updating in future replicates of the study, the original sampling frame was randomly divided into four mutually exclusive subsets that were balanced with respect to age group and Zip Code. As detailed below, the first of these subsets was then used to select the sample of beneficiaries for replicate 1 . The remaining subsets were set aside for use in the subsequent replicates of the study and were updated for deaths, moves, and new enrollees using the most recent information available at the time of sample selection. Beneficiaries who were previously included in the Medicare Current Beneficiary Survey (MCBS) or the Senior Health Watch Study were deleted from the WHAS frame before sample selection, since these studies were also being conducted in Baltimore and there was a concern about respondent burden and potential nonresponse. It should be noted that since the samples for the other two studies were selected randomly, no sampling bias is introduced by excluding these persons from WHAS. Table A. 1 summarizes the sample sizes for each of the four WHAS replicates by age group. The sample sizes shown in Table A. 1 are for the "initial" samples of beneficiaries who were screened for eligibility. The corresponding numbers of
beneficiaries who were eligible for and completed the full baseline interview and nurse's examination are shown in Table A.4. In the remainder of this appendix, women who completed the full baseline interview and nurse's examination will be denoted as completing the examination. Additional information about the procedures used to select each of the four replicate samples is given below.

The sampling frame for the first replicate of the WHAS included 32,538 female Medicare beneficiaries who resided in the 12 Zip Code areas specified for the study and who were age 65 years or older as of September 1, 1992. Of the 32,538 eligible beneficiaries, 2,274 were MCBS or Senior Health Watch participants and were deleted from the sampling frame. The remaining 30,264 eligible beneficiaries were then stratified by Zip Code within each of three age groups (65 74, 75-84, and 85+) and randomly (and systematically) assigned to one of four mutually exclusive subsets of approximately equal size. The 7,566 beneficiaries who were assigned to subset 1 were retained for replicate 1 . Subsets 2 to 4 were set aside for future use in subsequent replicates of the study.

Table A. 1.Initial Sample Sizes for the WIIAS, by Replicate and Age Group

Replicate	$\begin{aligned} & \text { Age group) } \\ & \text { (at time of sampling) } \end{aligned}$			Total
	651074 vears	75 to 84 years	85 years and okler	
1. September 1, 1992	600	425	340	1,365
2. March 1, 1993	600	425	340	1,365
3. September 1, 1993	600	476	571	1.647
4. March 1, 1994	752	481	911	2,144
Total	2.552	1.807	2,162	6.521

Within the subset designated for the first replicate, 600 beneficiaries were selected from the 65 to 74 years age group, 425 from the 75 to 84 years age group, and 340 from the age 85 years and older group, for a total sample size of 1,365 beneficiaries. The sample sizes established for each age group were designed to yield a total sample of about 250 study participants who met specific physical disability and cognitive function criteria (Kasper and Rohde, 1992; Shapiro, 1991). Within each age group, the samples were selected at rates that varied by Zip Code to take account of the previous selection of MCBS and Senior Health Watch participants. However, the overall probabilities of selection were independent of Zip Code for each age group; that is, the sample was self-weighting within each of the three age groups but not across the three age groups.

The sampling frame for the second replicate consisted of the 31,938 eligible female beneficiaries residing in the 12 target Zip Code areas who were age 65 years or older as of March 1, 1993 (i.e., an updated frame was used for the second replicate). The selection of the sample for this replicate proceeded as follows. First, the subset of 7,566 previously enrolled beneficiaries who had been designated for replicate 2 (i.e., subset 2 created during the selection of the sample for replicate 1) was updated for deaths and moves, which reduced the number of beneficiaries to 6,897 . Next, a frame of new beneficiaries was constructed by matching the most recent HCFA file against the earlier HCFA file used to select the sample for replicate 1 . This matching process identified 4,300 new beneficiaries who were then randomly assigned to one of four subsets of equal size. Subset 2, consisting of 1,075 new beneficiaries, was retained for further subsampling.

However, it was later discovered that the 4,300 "new" beneficiaries identified above also included MCBS and Senior Health Watch participants, who should have been excluded from this set. (This problem was corrected in subsequent replicates of the study.) Of the 1,075 "new" beneficiaries assigned to subset 2, only 552 were actually new enrollees. The rest were MCBS and Senior Health Watch participants. Since the inadvertent inclusion of MCBS and Senior Health Watch participants was not discovered at the time of sample selection, the file from which the sample for the second replicate was selected consisted of $6,897+1,075=7,972$ beneficiaries. From this subset, 600 beneficiaries were selected from the age 65 to 74 years group, 425 from the age 75 to 84 years group, and 340 from the age 85 years and older group (age was determined as of March 1, 1993). Generally, any MCBS or Senior Health Watch participants who were sampled as part of the "new enrollee" sample were retained for the study.

Because the target sampling rates for the second replicate were derived under the erroneous assumption that MCBS and Senior Health Watch participants were excluded from the set of 4,300 newly enrolled beneficiaries, the actual overall sampling rates for the previously enrolled beneficiaries in replicate 2 varied slightly by Zip Code. However, this variation in sampling rates was not expected to seriously inflate the sampling errors of estimates from the survey.

The sampling frame for the third replicate consisted of the 31,068 eligible female beneficiaries residing in the 12 target Zip Code areas who were age 65 years or older as of September 1, 1993. Before the sample for this replicate was selected, the subset of 7,566 previously enrolled beneficiaries designated for replicate 3 (i.e., subset 3 created during the selection of the sample for replicate 1) was updated for deaths and moves. This reduced the number of previously enrolled beneficiaries in this subset to 6,497 . Next, a frame of new beneficiaries was constructed in two parts. The subset of new beneficiaries (subset 3) identified during the creation of the frame for the second replicate was updated for deaths and moves, which resulted in a subset of 497 new beneficiaries who were identified in the second data collection period and who survived to the current period. An additional 1,126 new beneficiaries were identified by matching the most recent HCFA file against the earlier HCFA files used to select the samples for replicates 1 and 2. The 1,126 newly identified beneficiaries were then randomly assigned to one of four subsets of
approximately equal size. Subset 3 , consisting of 281 of these new beneficiaries, was retained for further subsampling.

The file from which the sample for the third replicate was selected consisted of $6,497+497+$ $281=7,275$ beneficiaries. From this subset, 600 beneficiaries were selected from the age 65 to 74 years group, 476 from the age 75 to 84 years group, and 571 from the age 85 and older group (age was determined as of September 1, 1993), for a total sample of 1,647 beneficiaries. The somewhat larger sample sizes specified for replicate 3 were intended to compensate for the lower-thanexpected study yields in the previous two replicates. The within-Zip Code sampling rates used to select the previously enrolled beneficiaries varied by Zip Code to compensate for the exclusion of MCBS and Senior Health Watch participants. However, the resulting overall probabilities of selection were independent of Zip Code within age group for both previous and new beneficiaries.

The sampling frame for the fourth and final replicate included 31,488 eligible female beneficiaries residing in the 12 target Zip Code areas who were age 65 years or older as of March 1, 1994. Before the sample for this replicate was selected, the subset of 7,564 previously enrolled beneficiaries designated for replicate 4 (i.e., subset 4 created during the selection of the sample for replicate 1) was updated for deaths and moves, which reduced the number of previously enrolled beneficiaries in this subset to 6,255 . Next, a frame of new beneficiaries was constructed in three parts. The subset of new beneficiaries (subset 4) identified during the creation of the frame for the second replicate was updated for deaths and moves, which resulted in a subset of 488 new beneficiaries who were identified in the second data collection period and who survived to the current period. The subset of new beneficiaries (subset 4) identified during the creation of the frame for the third replicate was also updated for deaths and moves, which resulted in a subset of 255 new beneficiaries who were identified in the third data collection period and who survived to the current period. An additional 1,646 new beneficiaries were identified by matching the most recent HCFA file against the earlier HCFA files used to select the samples for replicates 1, 2, and 3. The 1,646 newly identified beneficiaries were then randomly assigned to one of four subsets of approximately equal size. Subset 4, consisting of 411 of these new beneficiaries, was retained for further subsampling.

The file from which the sample for the fourth replicate was selected therefore consisted of 6,255 $+488+255+411=7,409$ beneficiaries. From this sulset, 752 beneficiaries were selected from the age 65 to 74 years group, 481 from the age 75 to 84 years group, and 911 from the age 85 years and older group (age was determined as of March 1, 1994), for a total sample of 2,144 beneficiaries. The sample sizes specified for the fourth replicate reflected additional adjustments designed to more closely achieve the study's overall sample size goals within age groups. The within-Zip Code sampling rates used to select the previously enrolled beneficiaries varied by Zip Code to compensate for the exclusion of MCBS and Senior Health Watch participants. As a result of the larger sample size requirements for the oldest age group, all available beneficiaries designated for the fourth replicate in some Zip Codes were included in the sample. The resulting overall probabilities of selection therefore varied slightly by Zip Code for the oldest age group.

Within the two younger age groups, the overall probabilities of selection were independent of Zip Code.

Weighting and Estimation Procedures

The estimates of means and proportions presented in this monograph were calculated using weights that inflate the respondent data to population levels. Such weights are needed to properly reflect sample design features such as stratification and variable probabilities of selection, and also to compensate for differential nonresponse rates (e.g., see Skinner et al., 1989). As described below, two sets of weights were developed for the analysis of the WHAS data, including one set for the initial (screening) sample and another for the final study sample (women who completed both the baseline interview and the followup nurse's examination). The procedures used to construct the weights for the WHAS samples are described in the following sections.

Weighting the Initial (Screener) Sample

The first step in the weighting process was to assign base weights equal to the reciprocals of the overall probabilities of selection to each beneficiary included in the initial sample. The sum of the base weights (when summed over all beneficiaries in the screening sample) provides an unbiased estimate of the number of beneficiaries in the HCFA frame at the time the sample was selected. The average base weights assigned to the sampled beneficiaries and the corresponding weighted sample counts are summarized in Table A. 2 by age group and replicate.

Table A.2. Base Weights Assigned to Sampled Beneficiaries, by Replicate and Age Group

Replicate	Age group (at time of sampling)			
	65 to 74 years	75 to 84 years	85 years and older	
1. September 1, 1992	26.78	27.84	13.63	32,534
2. March 1, 1993	27.23^{*}	26.42^{*}	12.71^{*}	31,888
3. September 1,1993	25.74	23.80	7.53	31,072
4. March 1, 1994	21.15	23.41	4.75^{*}	31,492

[^8]To compensate for losses owing to screener nonresponse, the base weights were adjusted within broad classes defined by age group, race, and geography (Zip Code). Collapsing across Zip Codes was often necessary to ensure a minimum sample size of about 15 to 20 beneficiaries in each final weighting class. To calculate the required nonresponse adjustments, the sampled beneficiaries were assigned to one of the four screener response-status groups defined in Table A.3. Note that the screener nonrespondents were classified into one of two groups depending on their presumed eligibility for the screener. The type 1 nonrespondents included nonrespondents who were known not to have moved, been institutionalized, or died, while the type 2 nonrespondents included nonrespondents who may have moved, been institutionalized, or died.

Conceptually, the nonresponse adjustments were made in two stages. At the first stage of adjustment, the total weight of the type 2 nonrespondents in weighting class h was distributed in proportion to the remaining groups in the sample; that is, an initial adjusted weight for the i th screener respondent in class h was calculated as:

$$
\begin{equation*}
w_{h h}^{(1)}=w_{h u}^{\text {base }}\left(\frac{S_{1}+S_{2}+S_{3}+S_{4}}{S_{1}+S_{3}+S_{4}}\right), \tag{1}
\end{equation*}
$$

where $w_{h i}^{\text {base }}$ is the base weight for the i th screener respondent in class h, and S_{k} is the sum of the base weights, summed over the $n_{h k}$ sampled beneficiaries in response-status group $k(k=1$, 2, 3, 4), where the four response-status groups are defined in Table A.3. In effect, a proportion of the type 2 nonrespondents was treated as eligible for the screener survey (i.e., have not moved, become institutionalized, or died), and the complementary proportion was considered to be out of scope (i.e., have moved, become institutionalized, or died).

At the second stage of adjustment, the previously adjusted weights of the screener respondents were further inflated to compensate for the type 1 respondents; that is, the final screener nonresponse-adjusted weight for the i th screener respondent in class h (whether or not the respondent qualified for the full baseline interview and nurse's examination) was calculated as

$$
\begin{equation*}
w_{h i}^{\wedge R}=w_{h i}^{(1)}\left(\frac{S_{1}^{\bullet}+S_{2}^{*}}{S_{1}^{*}}\right) \tag{2}
\end{equation*}
$$

where S_{k}^{*} is the sum of the $\boldsymbol{w}_{h i}^{(1)}$'s, summed over the $n_{h k}$ sampled beneficiaries in response-status group $k(k=1,2)$.

Note that the $w_{h i}^{N R}$'s defined by formula (2) are the appropriate weights for analyzing the screener survey data for any particular replicate.

Table A.3. Distribution of Sampled Persons by Screener Response Status and Replicate

Screener response status group	WHAS replicate				Total
	1	2	3	4	
1. Respondents: persons for whom a completed screener was obtained, whether or not the person qualified for the full baseline interview and nurse's exam	883	903	1,068	1,283	4,137
2. Type 1 Nonrespondents: persons for whom a completed screener was not obtained, but who have not died, been institutionalized, or moved.	169	210	257	380	1,016
3. Type 2 nonrespondents: persons for whom a completed screener was not obtained, but who may have died, been institutionalized, or moved.	33	28	38	64	163
4. Out of scope (ineligible for the screener): persons who died, were institutionalized, or moved out of the survey area.	280	224	284	417	1,205
Total unweighted count	1,365	1,365	1,647	2,144	6,521
Total weighted count of respondents (response status group 1) using final screener weights	26,506	27,230	27,016	27,309	---

Weighting the Examination Sample

Ordinarily, the weight for a person for whom an examination was conducted is equal to the nonresponse-adjusted weight, $w_{h i}^{N R}$. However, for various reasons, not all of those who qualified for the full baseline interview and nurse's examination completed the full assessment. To compensate for the examination nonrespondents, an additional adjustment was made within classes defined by
age group, number of domains of disability (2, 3, or 4), and Mini-Mental State Examination score (less than 25 or 25 or higher).

Specifically, let $n_{g 1}$ denote the number of persons in adjustment class g for whom examination data were obtained (examination "respondents"), and let $n_{g 2}$ (lenote the corresponding number of persons who qualified for the examination, but for whom examination data were not obtained (examination "nonrespondents"). The final examination weight for the i th respondent in adjustment class g was computed as

$$
\begin{equation*}
w_{g i}^{\text {exam }}=w_{g^{i}}^{N R}\left(\frac{S_{1}^{\bullet \bullet}+S_{2}^{\bullet \bullet}}{S_{1}^{\bullet \bullet}}\right) \tag{3}
\end{equation*}
$$

where $S_{k}^{* *}$ is the sum of the $w_{g^{\prime}}^{N R}$'s, summed over the $n_{g^{k}}$ sampled beneficiaries in examination response-status group $k(k=1,2)$. Table A. 4 summarizes the numbers of examination respondents by replicate and age group, along with the corresponding weighted counts of respondents using the final examination weights.

Table A.4. Distribution of Examination Respondents by Replicate and Age Group*

Replicate	Unweighted count of baseline interview and examination respondents			Weighted sample count
	$\begin{gathered} 65 \text { to } 74 \\ \text { years } \end{gathered}$	75 to 84 years	85 years and older	
1. September 1, 1992	89	79	44	8,611
2. March 1, 1993	103	77	43	8,766
3. September 1,1993	77	77	89	7.796
4. March 1, 1994	119	78	127	9,554
Total	388	311	303	..

[^9]
Estimates for All WHAS Replicates Combined

The sample-based estimates presented in this monograph were obtained by combining the weighted results from all WHAS replicates. The combined estimate therefore represents a
weighted average of the corresponding estimates for each of the four replicates. Specifically, let \bar{x}_{t} denote the estimated mean value of a survey item, X, for WHAS replicate t; that is,

$$
\begin{equation*}
\bar{x}_{t}=\frac{\sum_{i=1}^{n_{t}} w_{t i}^{\text {exam }} x_{t i}}{\sum_{i=1}^{n_{t}} w_{t i}^{\text {exam }}} \tag{4}
\end{equation*}
$$

where $x_{t i}$ is the observed value of X for respondent i in WHAS replicate $t, w_{t i}^{\text {exam }}$ is the corresponding sampling weight for respondent i in WHAS replicate t, and n_{t} is the sample size (number of respondents) for WHAS replicate t. The corresponding estimate for all replicates combined, $\bar{x}_{\text {comb }}$, was then computed as

$$
\begin{equation*}
\bar{x}_{t}=\frac{\sum_{t=1}^{4} \sum_{i=1}^{n_{t}} w_{t i}^{\text {exam }} x_{t i}}{\sum_{t=1}^{4} \sum_{i=1}^{n_{t}} w_{t i}^{\text {exam }}} \tag{5}
\end{equation*}
$$

It should be noted that $\bar{x}_{\text {comb }}$ provides an unbiased estimate of the average population mean

$$
\begin{equation*}
\mu=\frac{\sum_{t=1}^{4} N_{t} \mu_{t}}{\sum_{t=1}^{4} N_{t}} \tag{6}
\end{equation*}
$$

where μ_{t} is the mean value of X for the eligible population of beneficiaries at time t (WHAS replicate t), and N_{t} is the corresponding size of the eligible population at time t. Each \bar{x}_{t} estimates μ_{t}. In the 2-year period during which the WHAS was conducted, the N_{t} 's did not vary importantly from replicate to replicate; thus, for all practical purposes, the weighting factor,

$$
N_{t} / \sum_{t=1}^{4} N_{t}
$$

was approximately $1 / 4$ for all t.

Computation of Sampling Errors

Because the sample design for the WHAS was a stratified probability sample, variance estimation based on the assumption of simple random sampling is not appropriate (for example,
see Skinner et al., 1989). To properly reflect design features used in the WHAS such as stratification and systematic sampling, the sampling errors (or variances) of the survey-based estimates were calculated by a pseudo-replication method known as jackknife replication. Under jackknife replication, a specified number of systematic subsamples were generated from the full sample, and these in turn were used to define a series of jackknife replicates ${ }^{1}$ by dropping one subsample at a time from the full sample. Each jackknife replicate was then reweighted using the weighting procedures developed for the full sample, and the resulting replicate-specific weights were attached to each data record to facilitate variance estimation. The advantage of the jackknife replication method is that it provides a relatively simple way of calculating the sampling errors of estimates from a complex sample design (for example, see McCarthy, 1966; Wolter, 1985).

Each jackknife replicate was formed as follows. The data from the selected women were first sorted by time period (i.e., by WHAS replicate). Within each time period they were sorted by age group and then by Zip Code within age group; that is, they were arranged in their sample selection order. A jackknife replicate was defined by leaving out every 31 st sampled woman and increasing the weights of those retained by $31 / 30$ so the weights add to the correct total. The rth jackknife replicate consisted of everyone except the r th, $r+31 t h, 2 r+31 t h$, etc., women.

To illustrate how the sampling errors were computed, let \bar{x} denote a weighted mean or proportion based on the full WHAS sample. Further, let $\bar{x}^{(r)}$ denote the corresponding estimate based on jackknife replicate r. The estimated variance of \bar{x} was then computed from the formula

$$
\begin{equation*}
\operatorname{var}(\bar{x})=\left(\frac{R-1}{R}\right) \sum\left(\bar{x}^{(r)}-\bar{x}\right)^{2} \tag{7}
\end{equation*}
$$

where the summation extends over the R jackknife replicates defined for variance estimation. In practice, R is usually designed to be between 30 and 50 ; for the WHAS, R was set to 31 . Note that the square root of $\operatorname{var}(x)$ is the standard error of \bar{x}.

WHAS Variance Estimation

Although the jackknife replication technique makes the estimation of the sampling variance of any statistic straightforward, the estimation process is computationally intensive. Standard statistical software does not provide a method for performing these computations; accordingly, it is necessary to use special-purpose programs in addition to programs that perform the analyses or tabulations. To reduce the work required to calculate sampling errors and to reduce the size of the publishing task for each estimate, an approximation of the standard error of an estimated

[^10]population proportion or mean is frequently used. With the approximate method, analysts can use simple formulas to obtain approximate standard errors from the estimates themselves, while still accounting for the effects of a complex sample design.

To approximate the standard error for an estimated population proportion or mean, design effects based on the coefficient of variation of the sampling weights were calculated. A design effect expresses the efficiency of the design compared to simple random sampling and is defined to be the ratio of the variance of the estimate obtained from the WHAS sample to the variance of the estimate obtained from a simple random sample of the same sample size (Kish, 1965). Under simple random sampling, the variance of an estimate of a proportion is $p(1-p) / n$, where p is the proportion of the sample having the characteristic, and n is the sample size used in calculating the proportion. Thus, the standard error for an estimated proportion is approximately given by

$$
\begin{equation*}
S E(\hat{p})=\sqrt{D E F F \frac{\hat{p}(1-\hat{p})}{n}} \tag{8}
\end{equation*}
$$

where $S E$ is the standard error, \hat{p} is the estimated population proportion, and $D E F F$ is the design effect.

Since the WHAS sample design was an unclustered, stratified probability sample design using sampling rates that varied by stratum and replicate (time), the design effect can be computed easily from the coefficient of variation of the sampling weights. For any subgroup of the sample, the $D E F F$ of the WHAS design is $D E F F=1+\left(c v_{w}\right)^{2}$ where $c v_{w}$ is the coefficient of variation of the weights (Kish, 1992). Table A. 5 shows the design effects due to variable weights, separately for the WHAS screener and the examination samples by age group.

Table A.5. Design Effects by Sample and Age Group

Age group (survey-reported)	Screener	Examination
65 to 74 years	1.013	1.019
75 to 84 years	1.015	1.024
85 years and older	1.313	1.302
Total	1.123	1.159

To assess the adequacy of the standard error approximation, unbiased estimates of variances using the jackknife replication technique were computed for a large number of statistics. The
statistical software procedure WESVAR (Westat, 1989) was used to compute the standard errors for estimates related to functioning domains, measured walks, functional reach, repeated chair stands, and walking aids. The approximate standard errors given by formula (8) were found to be comparable to the standard errors generated by the jackknife replication technique. Thus, the approximation provides an easy and efficient way for analysts to assess the sampling precision of the survey-based estimates presented in the monograph.

An example for computing the standard error for a percentage is illustrated using data on walking aids. For the examination sample, an estimated 39.9 percent of the 311 Medicare beneficiaries age 75 to 84 years reported they used a cane when they walked (i.e., $\hat{p}=0.399$, where \hat{p} is the weighted estimate). Using the design effect of 1.024 from Table A.5, the standard error can be computed as follows:

$$
S E(\hat{p})=\sqrt{\frac{(0.399)(0.601)}{311}(1.024)}=0.0281 \text { or }(2.81 \%)
$$

A 95 percent confidence interval for the percentage of persons age 75 to 84 years who use a cane can be constructed as

$$
\hat{p} \pm 1.96 S E(\hat{p})
$$

Substituting 39.9 percent for \hat{p} and 2.81 percent for $S E(\hat{p})$, a 95 percent confidence interval for the percentage P of Medicare beneficiaries age 75 to 84 years who use a cane when they walk is $39.9 \pm 1.96(2.81)$, or $34.4<P<45.4$.

The 95 percent confidence interval can be interpreted as follows: under repeated sampling with the same sample design, approximately 95 percent of intervals constructed as above will contain the population value of P.

This procedure also can be used to compute standard errors and confidence intervals for means. The standard error for an estimated mean, \bar{x}, can be approximated using the following formula:

$$
\begin{equation*}
S E(\bar{x})=\sqrt{D E F F \frac{s^{2}}{n}} \tag{9}
\end{equation*}
$$

where \bar{x} is the estimated (weighted) mean of the variable $x, D E F F$ is the design effect shown in Table A.5, and s^{2} is an estimate of the population variance of x. For example, s^{2} can be estimated using the formula

$$
\begin{equation*}
\frac{\sum w_{i}\left[x_{i}-\left(\frac{\sum w_{i} x_{i}}{\sum w_{i}}\right)\right]^{2}}{\sum w_{i}} . \tag{10}
\end{equation*}
$$

References

Kasper J, Rohde C. (1992). Sample Design for the Women's Health and Aging Study, The Johns Hopkins University, unpublished memorandum, 5/8/92.

Kish L. (1965). Survey Sampling. New York: Wiley \& Sons, p. 88.
Kish L. (1992). Weighting for unequal $\mathrm{P}_{\mathrm{i}} . J$ Official Stat 8:183-200.
McCarthy P. (1966). Replication: An approach to the analysis of data from complex surveys. Vital Health Stat. Series 2, No. 14, U.S. Department of Health, Education, and Welfare. Washington, DC.

Shapiro S. (1991). Sample Design: Women's Health and Aging Study, The Johns Hopkins University, unpublished procedural memorandum, 2/23/91.

Skinner C, Holt D, Smith T, eds. (1989). Analysis of Complex Surveys. New York: Wiley \& Sons.
Westat. (1989). WESVAR documentation, Rockville, MD.
Wolter K. (1985). Introduction to Variance Estimation. New York: Springer-Verlag.

Appendix B

Screening and Baseline Questionnaires

Contents B-1
Screening questionnaire B-2
Baseline questionnaire B-8
Show cards B-74
a xibnegqA
$020 \operatorname{cosen}$

15

- Detred
E. C

Winindianat
1819

Exal
Syes wnid

APPENDIX B

QUESTIONNAIRE CONTENTS

WOMEN'S HEALTH AND AGING STUDY

INTRODUCTION

INI. YOU BAVE ENTERED ID NUKBER (ID NOKBER) POR (PT'S NAME). IS THIS THE CORRECT CASE?

(BOX INI. RETURN TO MAIN MENU.)

IN3. [MAKE NECESSARY CORRECTIONS.] (PRESS ENTER FOR PIELDS WITH NO CHANGES.]
IN4. [INTERVIENER: IS TEE PARTICIPANT CURRENTLY:]
NOT INSTITUTIONALIZED. .
INSTITUTIONALIZED. . .

SCREENER

```
SINTROA. I'd like to begin with some guestions mbout you.
S1. I bave your date of birth ligted ag (BIRTE DATE]. Is that correct?
```



```
1a. What is your date of birth?
    MONTA -MDY YEAR ...
(SKIP: IF ANY DATE PIELD IS MYSSING (BASE.PTDOBMO, PTDOBDD OR PTDOBYY - -7 OR -8), THEN GO TO S3. OTHERNISE, GO TO S2
S2. That makes you (AGE) today. Is that correct?
```


YES
 NO

```
At the present time, would you say that your bealth ia
```



```
S4. Now I am going to read a list of serious 112 bes ses and otber bealtb problems. For each ono please tell se if a doctor bas told you that you have that condition
S4a. Ias a doctor over told you that you had a beart attack or mocardial infaretion?
```


S4b. (Has a doctor ever cold you that you had... angina?
YES .

S4c. (Has a doctor ever told you that you had...) congentive beart fallure?

S4d. (Has a doctor ever told you that you bad...) bigh blood pressure?

```
NO.
REFUSED
DON'T RNOW
1
```

S4e. (Has a doctor ever told you that you had...) any otber beart disease?

```
No.
REFOSED
DON'T KNOW
DON'T KNOW
```

S4f. (Has a doctor ever told you that you had...) diabetes?

S4g. (Has a doctor ever told you that you had...) arthritis?

S4h. (Has a doctor ever told you that you had...) a stroke?

S4i. (Has a doctor ever told you that you had... cancer?

S4j. (Has a doctor ever told you that you had...) a broken or fractured hip?

S4k. (Has a doctor ever told you that you had...) Parkinson's disease?

S41. (Eas a doctor ever told you that you had...) lung disease, such as emphysema or chronic bronchitis?

S4m. (Eas a doctor ever told you that you had...) hearing problems?

S4n. (Eas a doctor ever told you that you had...) vision problems?

S5. Are you now married, or are you widowed, separated, divorced, or have you never been married?

WIDOWED.
DIVORCED
NEVER MARRIED
DON'T KNOW
NO.
8
-
NO.
2
of the following best describes your race? Are you...

S7. Is your main national origin or ancestry Hispanic?


```
S8. What is the bighost grade in school or year of college that you completedr
Elementary
```



```
COLLEGE & CPADOATE SCHOOL
```



```
    YEARS.
    YENRS
    4 YEARS.
    6 YENRS OR MOR
OTHER (SPECIFY)
REPOSED....
DON'T RNOW
```

[IF NONE, ENTER 0.]

SINTROB. Now, I'd like to sak about your bousebold.

```
S9. Besides youraelf, how many other people live in your bousehold?
```

\qquad OTHER PEOPLE IN HOUSEROLD
(SKIP: IF S9 - O THEN GO TO S11. OTHERNISE, GO TO S10.)
S10. Attachment SI.
What are the name of ell persons living or steying in the bousehold?
What is [NAKE]'s relatioaship to you? Is [NNRE] eale or feale? What in [NNR]'s ege?
[2-SPOUSE, 3-SON, 4-DAUGETER, 5-BROTHER, 6-SISTER, 7-FATEER, 8-MOTEER,
 52 -BOARDER, 53 -NURSE/ NURSE'S AIDE, 54-LEGAL/FINANCIAL OFFICER, 55-GUARDIAN, 91-OTEER RELATIVE, 92-OTHER NON-RELATIVTI

Sil. Next I am going to esk about everel ectivities. by yourself. thet is without help from enother person or speciel equipeent. do you have any difficulty reising your eras up over your beed?

Slla. How much difflculty do you have? Would you mey.
[EAND SHOM CARD ELUE TO RESPONDERT.]
S12. (By yourself, that is without help from onother person or apecial eguipaent, do you heve sny difficulty... u ing your fingers to graap or handle?

S12a. How much difficulty do you have? Would you ssy..
[HAND SHOW CARD BLUE TO RESPONDENT.]
S13. (By yourself, that is without help from another person or apeciel egupmeat, do you beve eny diffleulty...) lifting or carrying something as heavy an 10 pounds, for examplo heg of grocerien?

S13a. How much difficulty do you have? Would you say...
〔BAND SHOW CARD BLUE TO RESPONDENT.]
Si4. (By yourself, that is without help from another person or apeciel eguipment, do you beve ady difficulty...) welking for g quarter of a mile, that is about 2 or 3 blocks?

Slia. How much difficulty do you have? Would you say...
[HAND SHON CARD BLUE TO RESPONDENT.]
S15. (By yourgelf, that is without help from sother person or apeciel egulpment, do you bave any difficulty... valking up 10 steps without resting?

Sl5a. How much difficulty do you have? Would you say...
[HAND SHOW CARD BLUE TO RESPONDENT.]
Sl6. (By yourself, that is without help from another person or special equipment, do you have any difficulty...) getting in and out of bed or chairs?

REFUSED. .
sl6a. How much difficulty do you have? Would you say...
[HAND SHOW CARD BLUE TO RESPONDENT.]
S17. (By yourself, that is without help from another person or special equipment, do you have any difficulty... bathing or showering?

slia. How much difficulty do you have? Would you say...
[HAND SHOW CARD BLUE TO RESPONDENT.]
S18. (By yourself, that is without help from another person or special equipment, do you have any difficulty... dressing?

Sl8a. How much difficulty do you have? Would you say...
[HAND SHOW CARD BLUE TO RESPONDENT.]
S19. (By yourself, that is without help from another person or special equipment, do you have any difficulty...) eating, for example, holding a fork, cutting your food, or drinking from a glass?

Sl9a. How much difficulty do you have? Would you say...
[HAND SHOW CARD BLUE TO RESPONDENT.]
S20. (By yourself, that is without help from another person or special equipment, do you have any difficulty...) using the toilet, including getting to the toilet?

s20a. How much difficulty do you have? Would you say...
[HAND SHOW CARD BLUE TO RESPONDENT.]
S21. Because of a health or physical problem, do you have any difficulty using the telephone by yourself?

S2la. By yourself, how much difficulty do you have? Would you say...
[HAND SHOW CARD BLUE TO RESPONDENT.]
(SKIP: GO TO S23.)
S22. Is this for health reasons or other reasons?

S23. (Because of a health or physical problem, do you have any difficulty...) doing light housework such as doing dishes, straightening up or light cleaning by yourself?

S23a. By yourself, how much difficulty do you have? Would you say... [HAND SHOW CARD BLUE TO RESPONDENT.]
(SKIP: GO TO S25.)

S24. Is this for bealth reasons or othar reasons?

S25. (Because of bealth or phyaical problem, do you bave any difficulty...) doing heavy housawork auch as washing windows, walls or eloors?

S25a. How much difiliculty do you have? would you aay.
[HAND SHOW CARD BLUE TO RESPONDENT.]
(SKIP: GO TO S27.)
S26. Is this for haalth reasons or othar reasons?

527. (Bacausa of a health or physical problem, do you bave sny difficuley

S27a. By youraelf, how much difficulty do you have? would you aay.
(EAND SHOW CARD BLUE TO RESPONDENT,!
(SKIP: GO TO S29.)
S28. Is this for health reasona or othar reasons?
MEALTH. $\operatorname{\text {OTGEREASONS}}$ (SPECIFYi. ${ }^{1}$

529. (Bacause of bealth or physical problem, do you hava my difficulty...) ahoppiag for paraonsliteme such as tollet items or medicine, by yoursal \&?

S29a. By yourself, how much difficulty do you hava? Would you say.
[HAND SHOW CARD BLUE TO RESPONDENT.]
(SKIP: GO TO SINTROC.)
S30. Is this for halth raasong or other raasons?
HEALTH. 1
$\begin{array}{ll}\text { REFUSED. } & -8 \\ \text { DON•T }\end{array}$
SINTROC. Now I would lika to ask you a few questions dealing with concentration and memory. Thay are routine quationa wa ak everyone, and may or may not apply to you directly. Soma ara a little mora difficult than others.

```
S31. What is the year?
```



```
S32. What season of the year is it?
```



```
S33. What is the data?
```



```
S34. What is the day of the waek?
```



```
S35. What is the month?
```


B-6

S42. I am going to spell a word forwards and I want you to spell it backward. The word is world, $\mathrm{H}-\mathrm{O}-\mathrm{R}-\mathrm{L}-\mathrm{D}$. Spell world backwards. [REPEAT SPELLING IP NECESSARY, BUT NOT AFTER SPELLING STARTS.] [RECORD RESPONSE ON LINE PROVIDED, THEN PRESS ENTER.] [CODE RESPONSE USING THE CATEGORIES BELOW.]

RIGET.
ERROR/REFUSAL
NOT ATTEMPTED
1
SHIPT/7

S43. Now, what were the three objects I asked you to remember?

APPLE	$()$,
TABLE	()

S44. What is this called? [SHOW WATCH TO RESPONDENT.]
WATCH ()

S45. What is this called? [SEOW PENCIL TO RESPONDENT.]
PENCIL ()
RIGHT. 1
ERROR/REFU
SHIFT/7
S46. I'd like you to repeat a phrase after me: [READ PERASE BELOW. ALLOW ONLY ONE TRIAL.]
"No ifs, ands, or buts."
RIGET.
1
0

S47. Read the words on this page and then do what it says
[HAND SHOW CARD A TO RESPONDENT.] [CODE "l" IP RESPONDENT CLOSES EYES.]


```
RIGET GAND ( WITE BOTH HANDS (% { ;
```



```
S49. Write ony complete sentence on that piece of paper for me. [SENTENCE MUST HAVE A SUBJECT AND A VERB, AND MURE SENSE.
SPELLING AND GRANMAR ERRORS ARE OR.J
```



```
S50. Eere is a drowing. Please copy the drawing on the same peper. [HAND SHOW CARD A TO RESPONDENT.) [CORRECT IP THE TWO PIVESIDED FIGURES INTERSECT TO FORM A FOUR-SIDED FIGURE AND IF ALL NNGLES IN THE FIVI-SIDED FIGURES ARE PRESERVED,
```



```
S51. To get picture of people financiel eitustion, we need to know the general range of lacome of all the people we interview. What was your household's totel income from ell sources, hefore texet, in (Ytak)? Sociel Security, retiremeat lacome, fob earnings, public oselstence, help from reletives, rent from property, end ony otber income should be included.
\$
``` \(\qquad\)
```

SSKIP: IF S51- -8 OR -7 , GO TO S52. OTHERWISE, GO TO END.)
S52. Would you look at thia cerd an tell me which letter represents your bouseboldis facome for (YEAR)? Your best estimate would be fine. We ere just looking for generel renge.
[HAND SHOW CARD C TO RESPONDENT.]

```

\section*{BASELINE INTERVIEW}

\section*{SECTION HH: HEALTH HABITS}

Hifintron. You beve been selected to perticipete in our study. You represeat tbousands of women end the fatormation which you give us will belp the Netionel Instituter of gesith end Joham Hopkini Univeristy leern about the hetith conditions end needs of women like yourself. Therefore, your perticipetion is very importent.

Betore we proceed surther, l would like you to reed and sign this consent form which will confira thet you heve egreed to the interview and physical examinetion nd that you give us permisision to examine your medical records. plesse take moment reed the roxm. [read consert form aloud.]

HHINTROB. Now I heve some guestions about your beelth.
Hy1. During the lest 2 weoks or 14 days, did you stey la bed for more than helf day because of 11 la ess or injury?

BH2. During the lest 2 weoks, bow many doys did you stoy in bed more thon belf the day beceuse of illase or fajury? \([1 f\) IN HOSPITAL DURING THIS TIME, COUNT AS DAYS IN BED
```

            DAYS IN BED
    (SKIP: IF HH2 . 14 THEN GO TO GR5. OTHERWISE, GO TO HE3.)
HH3. (Not counting the deys you spent in bed) (were/were) tbere any (other) days when you cut down on the thinga you usuelly do
because of illness or injury?

```

```

    How many days did you cut dom, not counting those when you wtsyed in bedf
        DAYS CUT DOWN
    HH5. Have you stoyed overnight in a bospital during the past }12\mathrm{ monthe?

```

```

HH6. How many nights did you stey overnight in the bospitel during the pagt 12 months?
NIGETS IN EOSPITAL
H\#7. Heve you steyed in a nursing home during the past 12 montha?

```


HH8. Altogether, how many days did you stay in the nursing home (during the past 12 months)?
DAYS IN NURS ING EONE
HH9. In the last 6 months, have you seen a physical therapist?

(HEl0)
HB9a. How many times have you seen a physical therapist?
NOMBER OF TIMES
HH10. In the last 6 months, have you seen an occupational therapist?
YEs .
no.
(HH11)
HH10a. How many times have you seen an occupational therapist?

NOMBER OF TIMES
HB11. In the last 6 months, have you seen a speech therapist?

(HH12)

HBlla. How many times have you seen a speech therapist?

NOMBER OF TIMES
HH12. In the last 6 months, have you seen a hearing therapist?

H812a. How many times have you seen a hearing therapist?

NOMBER OF TIMES
Hil3. In the last 6 months, have you discussed any personal problems with a psychiatrist, a psychologist, or any other mental health professional?

HRl3a. How many times have you discussed any personal problems with a psychiatrist, a psychologist, or any other mental health professional?

NOMBER OF TIMES
HH14. In the last 6 months, have you seen a doctor in his or her office or a clinic or at your home?

HB14a. How many times have you seen a doctor in his or her office or a clinic or at your home?

NOMBER OF TIMES
HH15. In the last 6 months, have you received nursing services at home from someone such as a visiting nurse, home health aide, or nurse's aide?

HH15a. How many times have you received nursing services at home from someone such as a visiting nurse, home health aide, or nurse's aide?

\section*{NOMBER OF TIMES}

HH16. Is there a regular doctor or a particular clinic, health center, doctor's office or other place that you usually go if you are sick or need advice about your health?

HH16a. Is there a place you go the most for medical advice or help?

HH16b. Have you been to a hospital, clinic, doctor's office or some other place for medical advice in the past five years?

EH17．What kind of place is that ．－a clinic，a health center，a bospital．a doctor office，or some other place？
IF CLINIC ASR：Is this a hospital outpatieot clioic（OPD）．a compeoy clioic，a bealth dopertment cilaic or some other kind of cllolc？
IP HEALTH CENTER ASK：Is this a bealth center run by the bealtb departmeot，by a bealth malotenance orgaoization（EMO），or by a group of doctors？
IF BoSPITAL ASR：Do you usually go to ao outpatieot cliolc（OPD）or to an emergeocy room（ER）？
IF DOCTOR ASK：Is this a doctor lo a cliole or bospltal or does be bave bis oma office？
HOSPITAL OUTPATIENT DEPARTMENT OR CLINIC．
BOSPITAL EMERGENCY ROOM．
COMPANY CLINIC．
HEALTH DEPARTMENT CLINIC
HEALTE DEPARTMENS CLINIC

HMO（HEALTH MAINIENANCE ORGANIZATION）
PARTICIPANT＇S HOME．
PARTICIRANT＇S HOM \(\square\)

HHI7a．IF DOCTOR＇S NAME NOT MENTIONED，ASK：DO YOU bave a regular doctor there？

HR17b．What is bis or ber game？
［RECORD ON LIST OF PROVIDERS．］［ENTER ONLY ONE PROVIDER．］
（INTERVIEWER：AYTER THE PROVIDER NAKE EAS BEEN COLLECTED TRANSFER THIS PROVIDER＇S NOMBER TO TKE SPACE PROVIDED BELOW．）

\section*{PROVIDER NUMBER}

EH18．What is the name of the place you ueually go to for medicel edvice？
［RECORD ON LIST OF PROVIDERS．］［ENTER ONLY ONE．］
［INTERVIEWER：APTER THE PACILITY NAME EAS BEEN COLLECTED TRANSYER THIS FACILITY＇S NUMBER TO THE SPACE PROVIDED BELOW．）

\section*{FACILITY NUMBER}

日H18a．What is（FACILITY）＇is address？
（RECORD ADDRESS OF THIS PACILITY ON LIST OF PROVIDERS．）
［INTERVIENER：AFTER TEE ADDRESS EAS BEEN COLEETED TRANSFER THE ADDRESS NUMBER TO THE SPACE PROVIDED BELOW．〕

\section*{ADDRESS NUMBER}

H月21．Do you bave any medicioes preacribed by doctor that you beve takeo or used to the pest 2 weeks？please 1001 de ansulio and eye drops if you use them．

Hi22．We are also doterested io other medicioes oot prescribed by doctor auch as：asprin，tylenol，Bufferin，Anacio，beadache pills or pain killers，laxatives，howel medicioe，cold medicine，cough medicioe，sleep medicion．sotacids or stomach medicinee， vitamios，oiotments，salves，or ey drops，or any other medicioes from the drug etore．Duriog the past two week，did you take any medicioe oot prescribed by a doctor？
［HAND SHOW CARD D TO RESPONDENT．］

（SKIP：IF HH21 AND HH22＝2， 7 OR -8 ，GO TO HH25．OTHERWISE，GO TO EH23．）
HH23．May I see the medicioe bottles，cootaloera or bags for all of the medicioes that you bave takeo or used io the latt two weoks．Please ioclude medicine prescrihed by a doctor and medicioe oot preecribed by a doctor．Pleaee remember to ioclude insulin and eye drops if you use them．
［RECORD ON MEDICINE ROSTER FORM．］
HH24．Are there other medicatioos that you bave taken in the past two weeka that i bave not aeea？

HH25．How old were you when you bad your last menstrual period？

\section*{AGE}

HH26. Did your periods stop because of surgery, prescription medicine, radiation, or natural menopause?

HH27. Did you ever have surgery on your ovaries?

HH28. Have you had both ovaries removed?

HH29. How old were you at the time (your ovaries were/your last ovary was) removed?
AGE
HH30. Have you had a flu shot in the past year?


```

REFUSED...

```

HH31. In the last year have you...

```

Both lost and gained weight, or
Had no change in weight?.
(HH34)
REFUSED.

```
HH3 4)

HH32. Did you (gain/lose) weight because you were trying to, or not? (For example, by dieting or exercising)

```

2

```


HH33. Was surgery, illness, or medication a major factor in your weight change?

REFUSED. . .
1
2
-7

Hisis 4. What was your usual weight at age 60 ?

\section*{POUNDS}

HH35. Would you say your appetite is usually.

HH36. Do you wear dentures?

HH37. Do you have problems chewing or swallowing that limit your ability to eat?

HH38. Which of the following best describes your current cigarette smoking status? [READ LIST.]

You are a current smoker?..
HH39. On average, how many cigarettes (do/did) you smoke per day?
\(\qquad\)
HR41. Do you usuelly drink elcoholic bevereges, including beer, wine, shery, or liquor, et leest once every week

HR42. On the deys when you dixink, about how many drinks do you usually have?
DRINXS PER DAY

HE43. Over the pest 6 months, bow many deys per week did you typleally driak like thie?

DAYS PER WEEK

\section*{SECTION AR: ARTHRITIS}

ARINTRO. Next, I heve some questions about your beelth
(SKIP: IF S4g (ERND.SCRARTHS) = 2, -7 OR -8, SET GRND.BASARTER - 2. THEN GO TO AR2. OTHERWISE, GO TO ARI.)
AR1. Eerlier you mentioned thet doctor hes told you that you heve erthritie.
PARTICIPANT MAINTAINS EARLIER RESPONSE PARTICIPANT CHANGES EARLIER RESPONSE.

1
(SKIP: IF 1 SET ARI (HRND. BASARTER) - 1, TEEN GO TO AR2. IF 2 SET AR1 (ERND.EASARTHR) 2, THEN GO TO AR2.)
AR2. Are you currently being treeted or toking medicetion for erthritia?

(SKIP: IF AR1 (ERND, BASARTER) AND AR2 (ERND.TRETARTE) - \(2,-7\) OR - B, THEN GO TO AR12. IF ARI (ERND.BASARTER) - 1 AND AR2 (HRND.TRETARTE) \(\quad 2,-7\) OR -8, THEN GO TO ARS. OTEERNISE, GO TO AR3.)

AR3. Whet is the name of the doctor who is treeting you or prescribing your medicine?
[RECORD ON LIST OF PROVIDERS.] [EATER ONLY ONE PROVIDER.]
〔INTERVIENER: AFTER THE PROVIDER NAKE EAS BEEN COLLECTED TRANSFER THIS PROVIDER'S NOMEER TO TEE SPACE PROVIDED BELOM, §

\section*{PROVIDER NUMBER}

AR4. What is (PROVIDER)' addrees?〔RECORD ADDRESS OF THIS PROVIDER ON LIST OF PROVIDERS.]
[INTERVIEWER: AFTER THE ADDRESS EAS BEEN COLLECTED TRAYSFER TEE ADDRESS NUMBER TO TEE SPACE PROVIDED BELON.]

AR5a. How old were you when you were firat told that you bad arthritia?
YEARS OLD

AR6. Heve you ever hed eny operetiong for treetment of your exthritia?

AR7a. Which foints or ereea were opereted on? Wes your right band or wriat operated on?

AR7b. (Which joints or erees were opereted on?) Wes your left hand or vriat opereted on?

B-12
AR7c. (Which joints or areas were operated on?) Was your right hip operated on?

AR7d. (Which joints or areas were operated on?) Was your left hip operated on?

AR7e. (Which joints or areas were operated on?) Was your right knee operated on?

AR7f. (Which Joints or areas were operated on?) Was your left knee operated on?
\(\qquad\)
REFOSED.
-7
-8
AR7g. Were any other joints or areas operated on?
OTHER (SPECIFY)... . 91

\section*{}
DON'T KNOW. .

ARB. What was the name of the hospital where you had the most recent gurgery?
[RECORD ON LIST OF PROVIDERS.] [ENTER ONLY ONE HOSPITAL.]
[INTERVIEWER: AFTER THE FACILITY NAME HAS BEEN COLLECTED TRANSPER THIS FACILITY'S NUMBER TO THE SPACE PROVIDED BELOW.]
```

    PACILITY NOMBER
    AR9. What is (PACILITY)'s addregs?
[RECORD ADDRESS OF THIS FACILITY ON LIST OF PROVIDERS.]
[INTERVIEWER: AFTER THE ADDRESS HAS BEEN COLLECTED TRANSFER THE ADDRESS NURBER TO THE SPACE PROVIDED BELOW.]

```

\section*{ADDRESS NOMBER}

AR10. When were you admitted to the hospital for the surgery?

(SKIP: IF ANY ADMISSION DATE FIELD MISSING (DATS. DATE1MM, DATEIDD OR DATEIYY \(=-7\) OR -8), THEN GO TO AR11 OTHERWISE, GO TO AR12.)

AR11. When were you discharged?

AR12. Has a doctor ever told you that you had osteoporosis or thinning of the hones?

AR13. Are you currently heing treated for osteoporosia?

AR14. What is the name of the doctor who is treating you? (See AR3.)
AR15. What is (PROVIDER)'s address? (Same as AR4.)
BOX AR5: IF S4j (HRND. SCRFXHIP) \(=2,-7\) OR -8 , THEN GO TO AR23. OTHERWISE, GO TO AR16.
AR16. Earlier you mentioned that a doctor has told you that you had hroken or fractured your hip.
PARTICIPANT MAINTAINS EARLIER RESPONSE..................................... 1
PARTICIPANT CBANGES EARLIER RESPONSE.
(SKIP: IF 1 SET AR16 (HRND.BASPXHIP) \(=1\), THEN GO TO AR17. IF 2 SET AR16 (HRND.BASFXHIP) \(=2\), THEN GO TO AR23.)
AR17. Which hip did you hreak?

AR18. Were you hospitelized for treetment of your hroken hip(a)?

AR19. Whet is the name of the bospitel where you were hospitelized for treetment of your (most recent) hroken hip? (See ARs.)
AR20. Whet 15 (FACILITY)'s eddress? (Same es AR9.
AR21. When were you edmitted to the hospitel?

(SRIP: IF ANY ADMISSION DATE FIELD MISSING (DATS. DATEIMA, DATEIDD OR DATEIYY - -7 OR -8), THEN GO TO AR22. OTHERWISE, GO TO AR23.)

AR22. When were you discherged?

AR23. Since the of 50 , hes doctor ver told you thet you had hroken or frectured your wrist or erm?

AR24. Whet wes the dete of this (most recent) broken wrist or erm?

AR2S. Hes e doctor ever x-reyed you ond told you that you bed a compession fracture or collepsed or crushed vertebree?

AR26. How of were you when you were firat told thet you had comprealon frecture?
 YEARS OLD

AR27. Since the ege of 50, bas e doctor ever told you thet you bed hroken or frectured eny other bones?

AR28. Which hones did you hreek or frecture? (What was the dete of this frecture?) [ENTER ONE FRACTURE TO A LINE.]

BONE (S)

AR29. Has doctor ever told you thet you had a degenerated, slipped or berniated diac or acietica?

AR30. Are you currently being treated by e doctor for your degenerated. alipped, or bernieted diec or acietice?

AR31. Whet is the name of the doctor who is treeting you? (See AR3.)
AR32. Whet is (PROVIDER)'s eddress? (Same as AR4.)
(SRIP: IF AR30 = 1, THEN GO TO AR35.)
AR33. Whet is the name of the last doctor you sew for you degenereted. slipped, or heraieted disc or scietice? (See AR3.)
AR34. Whet 15 (PROVIDER)'s eddress? (Same em AR4.)
AR35. Did you bove surgery for treetment of your degenereted, silpped, or beraieted disc or scietice?

AR350. Whet wes the name of the hospitel where you hed your (most recent) surgery for your degenerated, slipped, or hernioted disc or scietice? (See AR8.)

AR35h. Whet is (FACILITY)'s eddress? (Same es AR9.)

AR36. When were you admitted to the hospital?
MONTH DAY \(/\) I/ YEAR
(SKIP: IF ANY ADMISSION DATE FIELD MISSING (DATS. DATEIMM, DATEIDD OR DATEIYY = -7 OR -8), THEN GO TO AR37. OTHERWISE GO TO AR3B.

AR37. When were you discharged?

AR38. Were you ever hospitalized for your degenerated, slipped, or herniated disc or sciatica (other than when you had surgery) ?

AR39. What was the name of the hospital where you were (most recently) hospitalized for your degenerated, slipped, or herniated disc or sciatica (other than when you had surgery)? (See AR8.)
AR40. What is (FACILITY)'s address? (Same as AR9.)
AR41. When were you admitted to the hospital?

(SKIP: IF ANY ADMISSION DATE FIELD MISSING (DATS. DATEIMM, DATEIDD OR DATEIYY \(x-7\) OR -8), THEN GO TO AR4IA. OTHERWISE, GO TO AR42.)

AR4la. When were you discharged?

AR42. Has a doctor ever told you that you had spinal stenosis?

AR43. Are you currently being treated by a doctor for spinal stenosis?

AR44. What is the name of the doctor who is treating your spinal stenosis? (See AR3.)
AR45. What is (PROVIDER)'s tddress? (Same as AR4.)
(SKIP: IF AR43 = 1, THEN GO TO AR48.)
AR46. What was the name of the last doctor you saw for your spinal stenosis? (See AR3.)
AR47. What is (PROVIDER)'s address? (Same as AR4.)
AR48. Did you have surgery for treatment of spinal stenosis?

AR49. What was the name of the hospital where you had your (most recent) surgery for your spinal stenosis? (See AR8.)
AR50. What is (FACILITY)'s address? (Same as AR9.)
AR51. When were you admitted to the hospital?

SKIP: IF ANY ADMISSION DATE FIELD MISSING (DATS. DATEIMM, DATEIDD OR DATEIYY = -7 OR -8), THEN GO TO AR52. OTHERWISE, GO TO AR53.)

AR52. When were you discharged?

AR53. Were you ever hospitalized for spinal stenosis (other than winen you had surgery)?

AR53a. What was the name of the hospital where you were (most recently) hospitalized for spinal stenosis (other than when you had surgery)? (See AR8.)

AR53b. What is (FACILITY)'s address? (Same as AR9.)
```

AR53c. When vere ynu admitted to the bospital?

```

```

（SKIP：IF ANY ADMISSION DATE FIELD MISSING（DATS．DATE110X，DATEIDD OR DATEIYY＝－7 OR－8），TBEN GO TO ARS3A．OTEERWISE，GO TO AR54．）
AR53d．When vere you discharged？

```

```

AR54．Durlag the past year，have you had pain，aching nr discomfort in your hand or vrista no mot days far at leatt ona month？

```

```

AR55．Please show me on thia chart which jointa in yaur hands，fingara，ar wrista have been painful．
（HAND SHOW CARD E TO RESPONDENT．〕 〔CODE ALL THAT APPLY．〕
AR56．Have yau had（this／any）pain in your hands ar wrists during tha pant month？

```

```

ARS7．Using this card，pleasa rate the averaga paln do your banda or wriata during tha past month by giving me aumber fram th 10，where 0 is no pain and 10 is avera or axcruciating pain，as bad aa ynu can imagine
（BAND SHOW CARD $\%$ TO RESPONDENT．）
SEVERITY OF PAIN CATEGORY
ARS8．Have ynu ever had any avalling with aching or tandernass in your hande or vrists on gost days for at last alx vaeks？

```

```

AR59．Please ghav me on this chart which folata in your hands，ilngers，or wriete bave been avallen
（HAND SHOW CARD E TO RESPONDENT．）（CODE ALL THAT APPLY．）

```

``` weeks？
```



```
AR61．Have you bad（this／any）metifanss in your banda or vists in the lant montb？
YES
NO．
1
2
-7
-8
（SKIP：IF AR60 AND AR61－2，－7 OR－8，THEN GO TO AR63．OTHERWISE，GO TO AR62．）
AR62．On the average，hav lang after getting up in the marning and moving arnuad daes the morning atiffasin in yur banda or vrists last？Wauld ynu say．
```



```
AR63．During the past year，have you had pain，sching ar discomfart in your knees an most days far at least ona month
```



```
DON'T KNOW.
```

DON'T KNOW.
-8
-8
AR64．Have you had（this／any）pain in your koees during the past month？

```

```

（SKIP：IF ARG3 AND AR64－2， 7 （ 7 OR－8，THEN GO TO AR7O．OTHERWISE，GO TO ARGS．）
AR65．When the knee pain is present，where is it mast intense？In the．．．
Right knee．．．1
2
3
-7
-8

```

AR66. Have you ever had any swelling with aching or tenderness in your knees on most days for at least six weeks?


AR67. Have you ever had stiffness in your knees when first getting up in the morning on most days for at least six weeks?

\section*{YES \\ REFUSED \\ 1
2
-7 \\ DON'T KNOW}

AR68. Has stiffness in your knees occurred in the last month?

(SKIP: IF AR67 AND AR68 = 2, 7 -7 OR -8, THEN GO TO AR70. OTHERWISE, GO TO AR69.)
AR69. On the average, how long after getting up in the morning and moving around does the morning stiffness in your knees last? Would you say.
```

Less than 15 minutes
15 to 30 minutes,
30 minutes to 1 hour, or
More than 1 hour?..
More than 1 hour?.
REFUSED...

```

AR70. Have you ever had an \(x\)-ray taken of your knees?


AR70a. When was this done most recently?

(SKIP: IF CURRENT YEAR - XRAYYY > 5, THEN GO TO AR71. OTHERWISE, GO TO AR7Ob.)
AR70b. What was the name of the doctor who ordered this \(x\)-ray? (See AR3.)
AR70c. What is (PROVIDER)'s address? (Same as AR4.)
AR71. During the past year, have you had pain, aching or discomfort in your hips on most days for at least one month?


AR72. Have you had (this/any) pain in your hips during the past month?

(SKIP: IF AR71 AND AR72 \(=2,-7\) OR -8 , THEN GO TO AR76a. OTHERWISE, GO TO AR73.)
AR73. When the hip pain is present, where is it most intense? In the.


AR75. Has stiffness in your hips occurred in the last month?

(SKIP: IF AR7 4 AND AR75 \(=2,-7\) OR - 8 , THEN GO TO AR76a. OTHERWISE, GO TO AR76.)
AR76. On the average, how long after getting up in the morning and moving around does the morning stiffness in your hips last? Would you say..


AR76a. Have you ever had ao x-ray takeo of your hips?


AR76b. When was this dooe most recently?

(SKIP: IF CURRENT YEAR - XRAYYY > 5, THEN GO TO BOX AR19. OTHERWISE, GO TO AR76c.)
AR76c. What was the oame of the doctoz who ordered this xray? (See AR3.)
AR76d. What is (PROVIDER)'s address? (Same ss MRt.)
BOX AR19: IF AR64 OR AR72 = 1. THEN GO TO AR77a. OTEERWISE, GO TO AR78.
R77a. Joiog this card, please rate the average paio lo your (kaees) (aod) (hipa) during tha past mooth by giviog me a numer trom 0 - 10, where 0 is no pain aod 10 is aevere or excruciatiog paio, as bad as you can imagioe How would you rate the paio wheo you are walkiog oo a flat surface?
[HAND SHOW CARD F TO RESPONDENT.]

SEVERITY OP PAIN CATEGORY
AR77b. (Uaiog this card, please rate the average pain in your (knees) (aod) (bipa) duriog the past mooth by giviog me number from 0 - 10, where 0 is oo palo aod 10 ie evere or excruciaeiog psio, aa bad ag you cao imagioa.) how would you rate the paio wheo you are going up or down taire?
[HAND SHOW CARD \(\%\) TO RESPONDEAT.]

SEVERITY OF PAIN CATEGORY
AR77C. (Usiog this card, please rate the average paio lo your (kneas) (and) (blps) during tha past mooth hy giving me a number from 0 - 10 , wher 0 da oo paio and 10 is avere or excruciatiog paio, as bad aly you cao imagioa.) How would you rate the paio when you are 10 hed at oight?
[HAND SHOW CARD F TO RESPONDENT.]

SEVERITY OF PAIN CATEGORY
AR77d. (Usiog thia card, please rate the average palo lo your (kaeas) (aod) (bipa) duriog the paat mooth by giviog me a oumber from 0-10, where 0 is oo palo aod 10 is severe or excruciatiog pain, as had as you cao izagine.l how would you rate the paio wheo you are sitting or lyiog down?
[HAND SHOW CARD \(P\) TO RESPONDENT.]

\section*{SEVERITY OP PAIN CATEGORY}

AR77e. (Jiog this card, pleane rate the average paio io your (knesi) (amd) (bips) during the part month by giving me a number from 0 - 10 , where 0 is oo paio and 10 is severe or excruciatiog paio, as had as you cao imagioe.) bow would you rata the paio when you are standiog upright?
[KAND SHON CARD F TO RESPONDENT.]

\section*{SEVERITY OF PAIN CATEGORY}

AR78. During the past year, have you had pain, aching or diacomfort lo your leat oo most daya for at least ooe mooth?


AR79. During the past mooth have you had (this/any) pain io your fat?

(SKIP: IF AR78 AND AR79 - 2, -7 OR -8, THEN GO TO ARB6. OTHERWISE, GO TO ARBO.)

AR80. Usiog this card, please rate the average pain io your feet during the paat month by giving me a number from 0 to 10 , where 0 is no pain and 10 is gevere or excruciatiog paio, as bad as you can imagioe.
(HAND SHOW CARD F TO RESPONDENT.]

SEVERITY OF PAIN CATEGORY
AR81. Have you ever had any swelliog with aching or tenderness io your feet oo most days for at least fix weeks?


REFUSED. DON' \(^{\text {I }}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\quad\).
AR83. Have you ever had stiffness in your feet when first gettiog up in the morning on most days for at least six weeks

```

2

```
DON' T XNOW

B-18

AR84. Has stiffness in your feet occurred in the last month?

(SKIP: IF AR83 AND AR84 = \(2,-7\) OR -8 , THEN GO TO AR86. OTHERWISE, GO TO AR85.)
AR85. On the average, how long after getting up in the morning and moving around does the morning stiffness in your feet last? Would you say...


AR86. During the past year, have you had pain in your lower back on most days for at least one month?


AR87. Using this card please rate the average pain in your back during the past month by giving me a number from 0 to 10 , where 0 is no pain and 10 is severe or excruciating pain, as bad as you can imagine
[HAND SHOW CARD F TO RESPONDENT.]

SEVERITY OF PAIN CATEGORY

\section*{SECTION HE: HEART DISEASE AND DIABETES}

BOX HE1: IF S4a (HRND.SCRMYOCR) \(=2,-7\) OR -8 , THEN GO TO BOX HE4. OTHERWISE, GO TO HEl.
HE1. Earlier you mentioned that a doctor has told you that you had a heart attack or myocardial infarction.
PARTICIPANT MAINTAINS EARLIER RESPONSE. \(\qquad\)
1
2

SRIP: IF 1 SET HE1 (HRND. BASMYOCR) =1, THEN GO TO HE2. IF 2 SET HE1 (ERND.BASMYOCR) = 2 , THEN GO TO BOX EE4.
EE2. How many heart attacks or myocardial infarctions have you had?
INFARCTIONS/HEART ATTACKS
(SKIP: IF HE2 (COND.EPISDNUM) \(=1,-7\) OR -8 , GO TO HE3a. OTHERWISE, GO TO HE3.)
HE3. In what month and year was your first heart attack or myocardial infarction?
MONTH \(/\) YEAR
HE3a. In what month and year was your (most recent) heart attack or myocardial infarction?
MONTH \(/ \overline{\text { YEAR }}\)
日e4. What was the name of the doctor who told you that you had (a/your most recent) heart attack or myocardial infarction? (See AR3.)

EEsa. What is (PROVIDER)'s aódress? (Same as AR4.)
EE5. Were you hospitalized for your (most recent) heart attack or myocardial infarction?
\begin{tabular}{|c|c|c|}
\hline YES & 1 & \\
\hline NO. & 2 & (BOX gE 4 ) \\
\hline REFUSED & -7 & (BOX HE4) \\
\hline DON'T KNOW & -8 & (BOX HE4) \\
\hline
\end{tabular}

HE6. What was the name of the hospital where you were hospitalized? (See AR8.)
EE6a. What is (FACILITY)'s address? (Same as AR9.)
BOX HE4: IF S4b (HRND.SCRANGNA) = \(2,-7\) OR -8 , THEN GO TO BOX ME 6 A. OTHERNISE, GO TO EE7.
EE7. Earlier you mentioned that a doctor has told you that you had angina or chest pain due to heart disease.
PARTICIPANT MAINTAINS EARLIER RESPONSE
PARTICIPANT CEANGES EARLIER RESPONSE
1
2
(SKIP: IF 1 SET HE7 (HRND. BASANGNA) \(=1\), TEEN GO TO HE8. IF 2 SET HE7 (ERND.BASANGNA) \(=2\), THEN GO TO BOX HE6A.) EE8. In what month and year were you first told that you had angina?


HE9. Were you ever hospitalized for angina or chest pain?


EEI0. What was the name of the hospital where you were most recently hospitalized for your angina or chest pain? (See AR8.)
HElOa. What is (FACILITY)'s address? (Same as AR9.)

HE11．When were you admitted to the bospital？
MONTH DAY \(/\) YEAR
（SKIP：IP ANY ADMISSION DATE PIELD MISSING（DATS．DATE1MA，DATEIDD OR DATEIMY－－7 OR－8），THEN GO TO REIIA．OTHERYISE，GO TO HE12．）

HElla．When were you discharged？


HE12．What was the name of the doctor who told you that you bad angina？（See AR3．）
HE12a．What is（PROVIDER）＇s address？（Same as AR4．）
HE13．Are you currently being treated by a doctor for angina？


EE14．What is the name of the doctor who is currently treating you？（See AR3．）
HE14a．What is（PROVIDER）＇s address？（Same as AR4．）
BOX HE6A：IF S4C（ERND．SCRCHF）－ \(2,-7\) OR -8 ，THEN GO TO BE23．OTHERWISE，GO TO 日E15．
EE15．Earlier you mentioned that a doctor has told you that you bad beart failur or congestive heart failure．
PARTICIPANT MAINTAINS EARLIER RESPONSE．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\(\frac{1}{2}\)
PARTICIPANT CEANGES EARLIER RESPONSE．．．．．
（SKIP：IF 1 SET HE1S（HRND．BASCHF）＝1，THEN GO TO EE16．IF 2 SET HE15（HRND．BASCHF）－2，THEN GO TO HE23．）
tel6．In what month and year were you lirst told that you had congestive heert failure？


日E17．Are you currently being treated by a doctor for congestive beart lailure？


HE18．What is the name of the doctor who is treating you？（See AR3．）
HE18a．What is（PROVIDER）＇s address？（Same as AR4．）
HE19．Were you ever hospitalized for congestive beart failure？


HE20．How many times have you been hospitalized for congestive beort failure in the last year？

IIMES
HE21．What was the name of the hospital where you were（most zecently）hospltalized for congeative beart failure？（See ARs．）
HE21a．What is（FACILITY）＇s address？（Same as AR9．）
HE22．When were you admitted to the hospital？

（SXIP：IF ANY ADMISSION DATE PIELD MISSING（DATS．DATEIMA，DATEIDD OR DATEIYY－-7 OR－8）．THEN GO TO RE22＠．OTHERKISE，GO TO HE23．）

HE22a．When were you discharged？


日E23．Has a doctor ever told you that you bad intermittent claudicstion or pain in your lega from blockage of the arteries （peripheral vascular disease or atherosclerosis）？


HE24．In what month and year vere you lirst told that you bad intermiteant claudication？
MONTR \(/\) YEAR
HE25．Are you currently being treated by a doctor for intermittent claudication？


HE26．What is the name of the doctor who is treating you？（See AR3．）

HE26a What is (PROVIDER)'s address? (Same as AR4.)
(SKIP: IF HE25 (COND.TRETCOND) =1, THEN GO TO HE28.)
HE27. What was the name of the last doctor you saw for your intermittent claudication? (See AR3.)
HE27a. What is (PROVIDER)'s address? (Same as AR4.)
HE28. Were you ever hospitalized for intermittent claudication?

```

REN'T FOON
HE31)
(HE31)

```

HE29. What was the name of the hospital where you were most recently hospitalized for intermittent claudication? (See AR8.) HE29a. What is (FACILITY)'s address? (Same as AR9.)

HE30. When were you admitted to the hospital?

(SKIP: IF ANY ADMISSION DATE FIELD MISSING (DATS. DATEIMM, DATEIDD OR DATEIYY \(=-7\) OR -8), THEN GO TO HE3OA. OTHERWISE, GO TO HE31.)

HE30a. When were you discharged?


HE31. Have you ever had surgery on the arteries in your legs?


HE32. What was the name of the hospital where you most recently hospitalized had surgery on the arteries in your leg? (See ARs.) HE32a. What is (FACILITY)'s address? (Same as AR9.)
HE33. When were you admitted to the hospital?

(SKIP: IF ANY ADMISSION DATE FIELD MISSING (DATS. DATEIMM, DATEIDD OR DATEIYY \(=-7\) OR -8), TEEN GO TO HE33a. OTHERWISE, GO TO EE34.)

HE33a. When were you discharged?


HE34. Have you ever had a toe, foot or leg amputated?


HE35. What was the name of the hospital where you most recently had a toe, foot or leg amputated? (See ARs.)
HE35a. What is (FACILITY)'s address? (Same as AR9.)
HE36. When were you admitted to the hospital?

(SKIP: IF ANY ADMISSION DATE FIELD MISSING (DATS. DATE1MM, DATE1DD OR DATE1YY \(=-7\) OR -8), THEN GO TO HE3GA. OTHERWISE, GO TO HE37.)

HE36a. When were you discharged?


BOX HE12: IF S4d (HRND. SCRHBP) \(=2,-7\) OR -8 , THEN GO TO BOX HE14. OTHERWISE, GO TO HE37.日E37. Earlier you mentioned that a doctor has told you that you have high blood pressure.

PARTICIRANT MAINTAINS EARLIER RESPONSE
        1
2

PARTICIPANT CHANGES EARLIER RESPONSE. .......................
(SKIP: IF 1 SET HE37 (HRND. BASHBP) =1, THEN GO TO HE38. IF 2 SET HE37 (HRND.BASHBP) = 2, THEN GO TO BOX HE14.)
HE38. How old were you when you were first told that you have high blood pressure?

\section*{YEARS OLD}

BOX HE14: IF S4f (HRND.SCRDIABS) = \(2,-7\) OR - 8 , THEN GO TO HE40. OTHERWISE, GO TO HE39.
EE39. Earlier you mentioned that a doctor has told you that you had diabetes.
PARTICIPANT MAINTAINS EARLIER RESPONSE.
1
2
(SKIP: IF 1 SET HE3 9 (HRND. BASDIABS) \(\triangle 1\), THEN GO TO HE39a. IF 2 SET HE39 (HRND.BASDIABS) = 2, THEN GO TO HE40.)

H839a. How old were you when you were firgt told that you had diabetes?
YEARS OLD

BE39b. Are you currently being treated by a doctor for diabetea?


HE39c. What is the name of the doctor who is treating you? (See NR3.)
EE39d. What \(1 s\) (PROVIDER)'s adress? (See AR4.)
(SKIP: IF BE39b (COND.TRETCOND) = 1, THEN GO TO EE40.)
EE39e. What was the name of the last doctor you an for your diabotes? (Slallor to AR3.)
EE39f. What is (PROVIDER)'s adirasa? (Same os AR4)
HE40. Bas a doctor ever told you that you bed rheumatic beert or beert velve problean?

EE41. Eave you ever had coronary ertery bypess aurgary?


EE42. When vere you most recently opereted on?


HE43. Do you have cardic peceaker implent?


H844. Rava you ever had cerotid endarterectomy, which is surgery on the blood vessels in your geck?


HE45. Whan did you hava your mot recent cerotid endarterectom?


日E46. Hava you avar had eny pain or discomort in your chast?


HE47. Do you get this poin or diacomfort when you walk uphill or hurry?


HE48. Do you get it when you walk et an ordinary pece on the love1?

(SKIP: IF EE47-3, -7 OR -8 AND HE48-2, -7 OR -8 , TBEN GO TO EEG2. OTHERWISE, GO TO EE49.)
EE49. How many blocks of walklag bringe on your chast pain? [ENTER ' 0 ' If LESS TELN ONE BLOCK.]
BLOCKS

BE50. What do you do if you get it while you are out walking?
\begin{tabular}{|c|c|}
\hline STOP OR SLOW DOWN...... & 1 \\
\hline \multicolumn{2}{|l|}{TARE NITROGLYCERINE AND} \\
\hline CONTINUE AT SAME PACE & 2 \\
\hline CONTIRUS AT SAME PACE & 3 \\
\hline REFUSED. & -7 \\
\hline DON'T RNOW. & - 8 \\
\hline OTHER (SPECIFY) & 91 \\
\hline
\end{tabular}

HE51. If you stand still, what happens to it? Does it get better or not?
GETS BETTER
DOES NOT GET BETTER
\begin{tabular}{rr}
1 & \\
2 & (HE53) \\
-7 & (HE53) \\
-8 & (HE53)
\end{tabular}

\section*{(HE53) \\ (HE53)}

HE52. How soon does it get better?

HE53. Please show me the places where you get this pain or discomfort.
[HAND SHOW CARD G TO RESPONDENT.] [CODE ALL THAT APPLY.]
\begin{tabular}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{tabular}
-

8
HE54. Is the chest pain usualiy continuous during these episodes or does it come and go during any one period?
CONTINUOUS .

PEFDSED
DON'T KNOW
1
2
-7
-8
HE55. Do you usually get the pain after climbing steps?


HE56. How many fiights of stairs brings on your chest pain?

FLIGHTS OF STAIRS
HE57. Do you get the chest pain after meals?


HE58. Do you ever get the chest pain while sitting gtill?


HE59. When you have an episode of chest pain or angina, do you treat it with Nitroglycerine pills under your tongue or a Nitroglycerine inhaler?


HE60. Is the duration of chest pain shortened after you have treated it?


日E61. How many of these types of episodes where you treat yourself do you usually have in a week?


EPISODES IN A WEER/MONTH/YEAR
HE62. Have you had this pain in the past two weeks?
\begin{tabular}{|c|c|c|}
\hline YES. & 1 & \\
\hline NO. & 2 & (HE64) \\
\hline REFUSED & -7 & (HE64) \\
\hline DON'T KNOW. & - 8 & (HE64) \\
\hline
\end{tabular}

日E63. In the past two weeks, has there been an increase in the frequency or severity of the chest pain, a decrease in the frequency or severity, or no change?


HE64. Have you ever had a severe pain across the front of your chest lasting for half an hour or more?
YES.
1
2
-7
-8
(HE67)
(HE67)
(HE67)

HE65. Did you aee doctor becauae of this pain?


HE66. What did your doctor say it was?
\begin{tabular}{|c|c|}
\hline ANGINA. & 1 \\
\hline BEART ATTACK. & 2 \\
\hline REFUSED. & - 7 \\
\hline DON'T KNOW. & -8 \\
\hline OTEER (SPECIFY) & 91 \\
\hline
\end{tabular}

EE67. Do you gat ahort of breath at alght if you sleep flat or on oaly one plilow?


HE68. Bow many plllowa do you need to lasp on to not be abort of brasth?
NOMBER OF PILLONS
NUMBER OF PILLOWS
SEORT OF BREATE EVEN UPRIGET
REFUSED.
DON'T RNOW
EE69. Do you vake up at aight gasping for breath?

\section*{YES
NO.}

REPUSED
DON'T RNOW
2
-7
-8
(SKIP: IF GE67 AND HE69 - 2, -7 OR - 8 , THEN GO TO DAINTROA. IT BE67 OR EE69 - 1, THEN GO TO BE70.)
HE70. About how oftan did you hava bhortasa of braath at aight ia tha last montb? Nould you asy
seversl times a night
once avery aight..
a fer times a reek
oace a veek, or
Pern ofted than once
DON'T
1
2
3
4
5
-7
-8

\section*{SECTION DA: DAILY ACTIVITIES}

DAINTROA. Now I bave a fow questiona on bow you spand your tima.
Da1. During a typical week, do you leava your aeighborbood?


Da2. Uaing this card, tell me bow many times in a typlcal week tbat you lava your galghborbood?
[HAND SBOW CARD E TO RESPONDENT.]
DA3. During a typical weok, weather parmitting, do you go outside tba bousa, but atay in your asighborbood?


DA4. How many times in a typical week do you go outaide but stay in your geighborhood?
[EAND SEOW CARD E TO RESPONDENT.]
DAS. Jaing thia card, tell me, in a typical week, about bow many times do you talk on the telephone with friends, neighbors or relatives?
(HAND SHOW CARD E TO RESPONDENT.]
DA6. How often do you get together with friends, neighbors or relatives?
[HAND SEOW CARD E TO RESPONDENT.]
DA7. Is there any one specisi person you know that you leel very close and intimate with .- a omeone you share confldencea and feelings with, someone you feel you can depend on?


DA8. Who 18 thia person? (ENTER ONLY ONE PERSON.)

DA9. Could you have used more emotional support than you received in the last year?


DA10. Would you say you needed


DAINTROB. Now I'm going to ask about some movements and activities which some people have difficulty doing for health or physical reasons.
(SKIP: IF S 12 (MVNT.SCRDFGRP) \(=2,-7\) OR -8, GO TO DA13. OTHERWISE, GO TO DA11.)
DAll. Earlier you mentioned that, by yourself, you (have difficulty/are unable to) (use/using) your fingers to grasp or handle, such as buttoning a shirt or picking something up.

PARTICIPANT MAINTAINS EARLIER RESPONSE PARTICIPANT CHANGES EARLIER RESPONSE.
(SKIP: IF 1 SET DA11 (MVNT. BASDFGRP) \(=1\) AND SET VARIABLE DALY. BASDFLVL = SCRDFLVL, THEN GO TO DA11aA. IF 2 SET DA11 (MVNT. BASDPGRP) \(=2\) AND SET VARIABLE DALY. BASDFLVL \(=-1\), THEN GO TO DA13.)

DAllaa. How long ago did you first start having difficulty using your fingers to grasp or handle?
Montis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
YEARS . . . . . . . .
(SKIP: IF DAIlaa \(=-7\) OR -8 , THEN GO TO DA11a. OTAERWISE, GO TO DA12.)
DAlla. Dsing this card, how long ago did you first start having difficulty (using your fingers to grasp or handle) would you say . . -
[HAND SHOW CARD PINR TO RESPONDENT.]
DAl2. What is the main condition that (causes you to have difficulty/prevents you from) using your fingers to grasp or handle? [TO PROBE: EAND SHOW CARD GREEN TO RESPONDENT.]

DAl3. By yourself, that is, without help from another person or special equipment, do you have any difficulty turning a key in a lock?


DA14. How much difficulty do you have turning a key in a lock? Would you say . . .
[HAND SHOW CARD BLUE TO RESPONDENT.]
DA14a. How long ago did you first start having difficulty turning a key in a lock?
MONTHS
1
(SKIP: IF DA14a \(=-7\) OR -8 , THEN GO TO DA15. OTHERWISE, GO TO DA16.)
DA15. Using this card, how long ago did you first start having difficulty (turning a key in a lock)?
Would you say
[HAND SHOW CARD PINR TO RESPONDENT.]
DA16. What is the main condition that (causes you to have difficulty/prevents you from) turning a key in a lock?
[TO PROBE: HAND SHOW CARD GREEN TO RESPONDENT.]
(BOX DA3. IF S11 (MVNT.SCRDPRSE) \(=2,-7\) OR -8, GO TO DA19. OTHERWISE, GO TO DA17.)
DA17. Earlier you mentioned that, by yourself, you (have difficulty/are unable to) (raise/raising) your arms up over your head.
PARTICIPANT MAINTAINS EARLIER RESPONSE........................... 1
PARTICIPANT CHANGES EARLIER RESPONSE............................ 2
(SKIP: IF 1 SET DA17 (MVNT.BASDFRSE) \(=1\) AND SET VARIABLE DALY.BASDFLVL = SCRDFLVL. SET VARIABLES DALY.DALYNOM AND DALYTYPE, THEN GO TO DA17aa. IF 2 SET DA17 (MVNT. BASDFRSE) \(=2\) AND SET VARIABLE DALY. BASDFLVL \(=-1\), THEN GO TO DA19.)

DAl7aa. How long ago did you first start having difficulty raising your arms up over your head?
MONTHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(SKIP: IF DAl7aa \(=-7\) OR -8 , THEN GO TO DA17a. OTHERWISE, GO TO DA18.)
DAl7a. Jsing this card, how long ago did you first start having difficulty (raising your arms up over your head)? Would you say
[EAND SHOW CARD PINK TO RESPONDENT.]
DA18. What is the main condition that (causes you to have difficulty/prevents you from) raising your arms up over your head?
[TO PROBE: HAND SHOW CARD GREEN TO RESPONDENT.]

DA19. By yourself, that is, without belp from aootber persoo or ppecial equipmeot, do you bave any difliculty atooplag, crouchiog, or kneeliog?


DA20. How mucb difficulty do you bave stoopiog, croucbiog, or kneeliog? Nould you sey . .
[HAND SHOW CARD BLUE TO RESPONDETT.]
DA20s. How long ago did you firat etst having difficulty foopiog, croucbiog, or kneeling?
MONTHS
1
(SKIP: IF DA20a - -7 OR -8, THEN GO TO DA21. OTHERWISE, GO TO DA22.)
DA21. Jsiog this card, bow loog sgo did you first start baviog difflculty (atooplog, crouchiog, or kneeliogl? Would you ay [YAND SHON CARD PINK TO RESPONDETT.)

DA22. What is the maio coodition thet (causes you to have difficulty/preveots you from) stoopiog, croucbiog, or kneeliog? [TO PROBE: EAND SEOW CARD GREEN TO RESPONDENT.]
(BOX DAS. IF S-13 (MVNT.SCRDFLFI) \(=2,-7\) OR -8, GO TO DA24. OTEERWISE, GO TO DA23.)
DA23. Esrifer you meotiooed that, by yourgelf, you (bave difficulty/are unable to) (ilft or cerry/isftiog or cerryiog) anething as heary as 10 ihs.. for example, a hag of groceries

PARTICIPANT MAINTAINS EARLIER RESPONSE
PARTICIPANT CHANGES EARLIER RESPONSE............................................... \(\frac{1}{2}\)
1SKIP: IF 1 SET DA23 - 1 AND SET VARIADLE DALY. BASDFLVL - SCRDFLVL. SET VARIADLES DALY DALYTM AND DALYTYPE. IF 2 SET DA23 - 2 AND SET VARIABLE DALY. BASDPLVL. -1, THEN GO TO DA24. IF BASDPLVL - 4 GO TO DA240 OTHERNISE, GO TO DA24.)

DA24. Do you lift or cesry sometbing es beavy es 10 lbs. less ofteo thao you used to?


ISKIP: IF DA23 - 1, GO TO DA24A. IF DA23 = 2 OR - 1 AND DA24 = 2, -7 OR - B, THEN GO TO DA27. IF DA23-2 OR - 2 AND DA24 - 1 , THEN GO TO DA26.)

DA24a. How loog so did you firat atart having difficulty liftiog or cerryiog amethiog as beevy af lo ibs.?
MONTES
YONTES
1
2

SKIP: IF DA24s - -7 OR -8 , TBEN GO TO DA25. OTEERWISE, GO TO DA26.)
DA25. Usiog this card, bow loog go did you firgt gtart heving difeiculty liftiog or carying something es beary es io lbe.j? Would you say
(RAND SHON CARD PINK TO RESPONDENT.)
DA26. What is the main condition thet fcauses you to bave difficulty/preveots you from liftiog or carryiog ametbing es heevy es 10 ihs.?
(TO PROBE: RAND SHOW CARD GREEN TO RESPONDRNT.)
DA27. By yourself, that is, witbout belp from eotber persoo or speciel equipmeot, do you bave aoy difficulty walkiog across a small room?


DA28. Do you walk scross small rooms less ofteo than you used to?


ISKIP: IF DA27-1, GO TO DA29. IF DA27 - 2, -7 OR -8 NND DA28 - 2, -7 OR -8, THEN GO TO BOX DA9. IF DA27 - 2 , - 7 OR -8 AND
DA2 8 - 1. THEN GO TO DA31.)
DA29. How much difficuity do you bave welkiog across mali room? Nould you sey
(GAND SHOW CARD BLUE TO RESPONDENT.)
DA29s. How long ago did you first stst haviog difficulty walkiog across smil room?
MONTHS YEARS.
(SKIP: IF DA29B - -7 OR -8 , TEEN GO TO DA30. OTHERWISE, GO TO DA31.)
DA30. Using this card, bow long ago did you first start baving difficulty (waikiog acrosa amali roomi? would you say
[HAND SHOW CARD PINX TO RESPONDENT.)

DA31. What is the main condition that (causes you to have difficulty/prevents you from) walking across a small room?
[TO PROBE: HAND SHOW CARD GREEN TO RESPONDENT.]
(BOX DA9. IF DA27 (MVNT.DIFWLKRM) \(=3\) OR DA27 \(=1\) AND DA29 (DALY. BASDFLVL) \(=4\), GO TO BOX DA12. IF S-14 (MVNT'SCRDFWLK) = 2 , -7 OR -8, GO TO DA33. OTHERWISE, GO TO DA32.)
DA32. Earlier you mentioned that, by yourself, you (have difficulty/are unable to) (walk/walking) for a quarter of a mile, that is, about 2 or 3 blocks.

PARTICIPANT MAINTAINS EARLIER RESPONSE
1
2
(SKIP: IF 1 SET DA32 = 1 AND SET VARIABLE DALY.BASDFLVL = SCRDFLVL. IF 2 SET DA 2 = 2 AND SET VARIABLE DALY.BASDFLVL = - 1 , THEN GO TO DA33. IF BASDFLVL \(=4\), GO TO DA34a. OTHERWISE, GO TO DA33.)

DA33. Do you walk a quarter mile (that ia, about 2 or 3 blocks) less often than you used to?


DA34a. How long ago did you first start having difficulty walking for a quarter mile, that is, about 2 or 3 blocks?
(SRIP: IF DA34a \(=-7\) OR -8 , THEN GO TO DA34. OTHERWISE, GO TO DA35.)
DA34. Dsing this card, how long ago did you first start having difficulty (walking for a quarter mile, that is, about 2 or 3 blocks)? Would you say. .
[HAND SHOW CARD PINK TO RESPONDENT.]
DA35. What is the main condition that (causes you to have difficulty/prevents you from) walking for a quarter of a mile (that is, about 2 or 3 blocks)?
[TO PROBE: HAND SHOW CARD GREEN TO RESPONDENT.]
(BOX DA12. IF S-15 (MVNT.SCRDFSTP) \(=2,-7\) OR - 8 , GO TO DA37. OTHERWISE, GO TO DA36.)
DA36. Earlier you mentioned that, by yourself, you (have difficulty/are unable to) (walk/walking) up lo steps without resting.
PARTICIPANT MAINTAINS EARLIER RESPONSE............................................................ 21
PARTICIPANT CHANGES EARLIER RESPONSE........
(SKIP: IF 1 SET DA36 = 1 AND SET VARIABLE DALY. BASDFLVL = SCRDFLVL. IF 2 SET DA \(36=2\) AND SET VARIABLE DALY. BASDFLVL = - 1 , THEN GO TO DA37. IF BASDFLVL \(=4\), GO TO DA39a. OTHERWISE, GO TO DA37.)

DA37. Do you walk up 10 steps without resting less often than you used to?


DA38. Do you walk up 10 steps without resting differently than you used to?

(SKIP: IF DA36 = 1 , GO TO DA39a. IF DA36 \(=2\) OR -I AND DA37 AND DA3B \(=2,-7\) OR -8, THEN GO TO DA4IA. IF DA36 \(=2\) OR - 1 AND DA37 OR DA38 = 1 , THEN GO TO DA40.)

DA39a. How long ago did you first gtart having difficulty walking up 10 steps without resting?
MONTHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
YEARS . . .
2
(SKIP: IF DA39a \(=-7\) OR -8 , THEN GO TO DA39. OTEERWISE, GO TO DA40.)
DA39. Dsing this card, how long ago did you first start having difficulty (walking up lo steps without resting)? Would you say [EAND SEOW CARD PINK TO RESPONDENT.]

DA40. What is the main condition that (causes you to have difficulty/prevents you from) walking up lo steps without resting? [TO PROBE: HAND SEOW CARD GREEN TO RESPONDENT.]

DA4la. When you walk, do you use a cane?


DA41b. Do you use a cane


DAAlc. Do you uae canc at home?


DA41d. Do you use a cane outside your home?

REPVSED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DA42a. When you walk, do you use a walker?


DA42h. Do you use a walker


DA42c. Do you use walker at bome?


DA42d. Do you use walker outside your home?


DA43a. When you shop, do you lean on an ohject such es shopping cert?


DA43h. Do you lean on an ohject such as shopping cart


DA44a. When you walk, do you reach out for or hold onto the furniture or walle?


DA44h. Do you reach out for or hold onto the furaiture or wolls


DA44c. Do you reach out for or hold onto the furniture or wallg th home?


DA14d. Do you roach out for or hold onto the furniture or walls outalde your home?


DA4sa, When you walk, do you hold onto another person?


DA45b. Do you hold onto another person
\begin{tabular}{|c|c|}
\hline Always & 1 \\
\hline Very often & 2 \\
\hline Often, or & 3 \\
\hline Sometimes? & 4 \\
\hline REFUSED. & -7 \\
\hline DON' T RNOW & -8 \\
\hline
\end{tabular}

DA45C. Do you hold onto another person at home?


DA45d. Do you hold onto another person outside your home?
\begin{tabular}{|c|c|}
\hline YES & 1 \\
\hline NO. & 2 \\
\hline DON'T GO OUTSIDE HOME & 3 \\
\hline REFOSED. & -7 \\
\hline DON' T KNOW. & -8 \\
\hline
\end{tabular}

DA46a. Do you use a wheelchair?


DA46b. Do you use a wheelchair


DA46c. Do you use a wheelchair at home?


DA46d. Do you use a wheelchair outside your home?
\begin{tabular}{|c|c|}
\hline YES & 1 \\
\hline NO. & 2 \\
\hline DON'T GO OUTSIDE HOME & 3 \\
\hline REFUSED. & -7 \\
\hline
\end{tabular}
(BOX DA15. IF DA27 = 3, OR DA27 =1 AND DA29 = 4, OR DA41a \(=3\), THEN GO TO BOX DA16. OTHERWISE, GO TO DA47.)
DA47. When you walk in the dark, do you reach out for or hold onto the furniture or walls?


DA47a. When you walk in the dark, do you hold onto another person?


DA48. Who helps you? [ENTER UP TO THREE HELPERS.]
(BOX DA16. IF S17 (MVNT.SCRDPBTH) \(=2,-7\) OR -8 GO TO DA50. OTHERWISE, GO TO DA49.)
DA49. Earlier you mentioned that, by yourself, you (have difficulty/are unable to) (bathe or shower/bathing or showering)
PARTICIPANT MAINTAINS EARLIER RESPONSE
PARTICIPANT CEANGES EARLIER RESPONSE.
1
(SKIP: IF 1 SET DA49 \(=1\) AND SET VARIABLE DALY. BASDFLVL = SCRDFLVL. IF 2 SET DA49 = 2 AND SET VARIABLE DALY.BASDFLVL = -1 , THEN GO TO DA50. IF BASDFLVL \(=4\) GO TO DA52a. OTHERWISE, GO TO DA50.)

DA50. Do you bathe or shower less often than you used to?


DA51. Do you bathe or shower differently than you used to?

(SKIP: IF DA49 = 1, GO TO DA52a. IF DA49 = 2 OR -1 AND DA50 AND DA51 = 2 , -7 OR -8 , THEN GO TO DA54. IF DA49 \(=2\) OR -1 AND DA50 OR DA51 = 1, THEN GO TO DA53.)

DA52a. How long sgo did you first stsrt having difficulty bathing or howering? MONTHS gonte

1
(SKIP: IF DA52a = -7 OR -8, THEN GO TO DA52. OTEERWISE, GO TO DA53.)
DA52. Jaing this card, how long ago did you first start having difficulty (bathing or ahowering)? Would you aby.. [GAND SHON CARD PINK TO RESPONDENT.]

DA53. What is the main condition that (csuses you to have difficulty/prevents you from) bathing or showering? [TO PROBE: RAND SEOW CARD GREEN TO RESPONDENT.]

DA54. Do you use special equipment to hathe or shower such as a shower seat, tub stool or grab bars?


DA55. Do you ususlly receive help from another person in beching or ahowering?


DA56. Who helps you? (ENTER OP TO THREE EELPERS.)
(BOX DA19. IF S18 (MVNT.SCRDPDRS) - 2, -7 OR -8 GO TO DA5A. OTHERWISE, GO TO DA57.)
DA57. Esrlier, you mentioned thst, by yourself, you (bave difficulty/ere unable tol (dresa/dreasing).
PARTICIPANT MAINTAINS EARLIER RESPONSE.
PARTICIPANT CHANGES EARLIER RESPONSI.................................... \(\frac{1}{2}\)
(SKIP: IF 1 SET DA57 - 1 AND SET VARIABLE DALY.BASDPLVL - SCRDFLVL. IY 2 SET DA57 - 2 AND SET VARIABLE DALY.BASDFLVL - - 1 , THEN GO TO DA5B. IF BASDFLVL - 4 GO TO DA60e. OTEERWISE, GO TO DA58.)

DA58. Do you dress lass often than you umed to?


DA59. Do you dress differently than you used to?

(SKIP: IF DA57-1, GO TO DA60a. IF DA57 - 2 OR - 1 AND DA58 AND DA59 - 2. -7 OR -8, THEN GO TO DA62. IF DA57 - 2 OR - 1 AND DASA OR DA59 - 1, THEN GO TO DA61.)

DA60a. How long ago did you first atert having difficulty dressing?
MONTHS
ONTBS
1
(SXIP: IF DA60a \(=-7\) OR -8 , THEN GO TO DA60. OTEERWISE, GO TO DA61.)
DA60. Jsing this card, how long ago did you firat atart baving difficulty (dreasing)? would you ayy.
[HAND SHOW CARD PINK TO RESPONDENT.]
DA61. What is the main condition that (causea you to have difelculty/prevents you from) dressing?
[TO PROBE: HAND SHOW CARD GREEN TO RESPONDENT.〕
DA62. Do you use specisl equipment to dress such as devices to help with zippers or huttons?


DA63. Do you usually receive help from snother person in dressiag?


DA64. Who helps you? [ENTER OP TO THREE GELPERS.]
(BOX DA22. IF S16 (MVNT.SCRDFCHR) \(=2,-7\) OR -8 GO TO DA67. OTHERWISE, GO TO DA65.)
DA65. Esrlier, you mentioned that, by youraelf, you (have difficulty/are unable to) (get/getting) in and out of hed or chaira
PARTICIPANT MAINTAINS EARLIER RESPONSE
PARTICIPANT CHANGES EARLIER RESPONSE.
(SKIP: IF 1 SET DA65 = 1 AND SET VARIABLE DALY.BASDFLVL - SCRDPLVL. IF 2 SET DAG5 - 2 AND SET VARIABLE DALY.BASDFLVL - - 1 . THEM GO TO DA67. IF BASDFLVL \(=4\) GO TO DA698. OTHERWISE, GO TO DA67.)

DA67. Do you get in and out of bed or chairs less often than you used to?


DA68. Do you get in and out of hed or chairs differently than you used to?

(SKIP: IF DA65 = 1, GO TO DA69a. IF DA65 = 2 OR -1 AND DA67 AND DA68 \(=2,-7\) OR - 8 , THEN GO TO DA71. IF DA65 \(=2\) OR -1 AND DA67 OR DA68 = 1, THEN GO TO DA70.)

DA69a. How long ago did you first start having difficulty getting in and out of bed or chairs?

(SKIP: IF DA69a \(=-7\) OR -8 , THEN GO TO DA69. OTHERWISE, GO TO DA70.)
DA69. Using this card, how long ago did you first start having difficulty (getting in and out of hed or chairs)? Would you say..
[EAND SHOW CARD PINK TO RESPONDENT.]
DA70. What is the main condition that (causes you to have difficulty/prevents you from) getting in and out of bed or chairs? [TO PROBE: HAND SHOW CARD GREEN TO RESPONDENT.]

DA71. Do you use special equipment to get in and out of bed or chairs such as a cane, walker, or special chair?
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
YES \\
NO. \\
REFUSED
\end{tabular}}} \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

DA72. Do you usually receive help from another person in getting in and out of hed or chairs?


DA73. Who helps you? [ENTER UP TO THREE HELPERS.]
(BOX DA25. IF Sl9 (MVNT.SCRDFEAT) \(=2,-7\) OR - 8 GO TO DA77. OTHERWISE, GO TO DA74.)
DA74. Earlier, you mentioned that, by yourself, you (have difficulty/are unable to) (eat/eating), for example, holding a fork, cutting up your food, or drinking from a glass

PARTICIPANT MAINTAINS EARLIER RESPONSE
PARTICIPANT CHANGES EARLIER RESPONSE.
(SxIp: IP
(SKIP: IF 1 SET DA7 \(4=1\) AND SET VARIABLE DALY.BASDFLVL \(=\) SCRDFLVL. IF 2 SET DA74 \(=2\) AND SET VARIABLE DALY.BASDFLVL \(=-1\), THEN GO TO DA77. OTHERWISE, GO TO DA74a.)

DA74a. How long ago did you first start having difficulty eating, for example, holding a fork, cutting up your food, or drinking from a glass?

MONTHS

(SKIP: IF DA74a \(=-7\) OR -8 , THEN GO TO DA75. OTHERWISE, GO TO DA76.)
DA75. Using this card, how long ago did you first gtart having difficulty (eating, for example, holding a fork, cutting up your food, or drinking from a glass)? Would you say...
[HAND SHOW CARD PINK TO RESPONDENT.]
DA76. What is the main condition that (causes you to have difficulty/prevents you from) eating (for example, holding a fork cutting up your food, or drinking from a glass)?
[TO PROBE: HAND SHOW CARD GREEN TO RESPONDENT.]
DA77. Do you use special equipment to eat such as special eating utensils?


DA78. Do you usually receive help from another person in eating?


DA79. Who helps you? [ENTER UP TO TEREE EELPERS.]
(BOX DA27. IF S20 (MVNT.SCRDFTOL) \(=2,-7\) OR -8 GO TO DA83. OTHERWISE, GO TO DA80.)
DA80. Earlier, you mentioned that, by yourself, you (have difficulty/are unable to) (use/using) the toilet including getting to the toilet.

\section*{PARTICIPANT MAINTAINS EARLIER RESPONSE \\ 1
2}
(SKIP: IF 1 SET DABO = 1 AND SET VARIABLE DALY.BASDFLVL = SCRDFLVL. IF 2 SET DA8O = 2 AND SET VARIABLE DALY. BASDFLVL = - 1 , THEN GO TO DA83. OTHERWISE, GO TO DA80a.)

DAB0a. How long ago did you first start having difficulty using the toilet, including getting to the toilet?
MONTHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(SRIP: IF DA80a \(=-7\) OR -8 , THEN GO TO DA81. OTHERWISE, GO TO DA82.)
DA81. Using this card, how long ago did you liret btart having difeiculty (using the toilet including getting to the toilet)?
Would you say.
[HAND SHOW CARD PINK TO RESPONDEATT.]
DA82. What is the main condition that (causea you to have difilculty/prevents you from) using the toilet including getting to the toilet?
[TO PROBE: GAND SHOW CARD GREEN TO RESPONDENT.]
DA83. Do you use special equipment to use the toilet such as a raiaed toilet, hedaide comeode or grab har?
YES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RO.
DON'T TNOW. ...............................................................

DAB4. Do you usually receive help from another person in using the toilet including getting to the toilet?


DA85. Who belps you? [ENTER UP TO THREE HELPERS.]
(BOX DA29. SKIPI IF ANY VARIABLE DALY. HELPER - 1 THEN GO TO DAB6. OTEERWISE, GO TO EXINTRO.)
DAB6. In the lat year, who have you relied on the mot for help with the activitios Ive mentioned?
[ENTER ONLY ONE GELPER.]
SECTION EX: EXERCISE TOLERANCE
EXINIRO. Next, please tell me whether or not you can do the following activitien, with or without symtone
(SKIP: IP DA27-3, OR IF DA27-1 NND DA29 - 4, OR IF DA41a - 3, THEN GO TO EX65. OTBERNISE, GO TO EX1.)
Ex1. Can you walk down a flight of etaire without topping, with or without ymptom?

(Ex33)
REFOSED
DON'T RNOW
.8

Ex2. When you (try to) walk dom a flight of ataira without atopping, do you get cheet pain?


Ex3. When you (try to) walk down alight of stairs without stopping, do you get short of breath?


Ex4. When you (try to) walk down a flight of taira without atopplag, do you get hip or knee pain?


Ex4a. When you (try to) walk down flight of staire without stopping, do you get excessively latigued


SKIP: IF EX1 (EXER.WLRSTRS) - 1 AND (EX2 (TOLE.CPACT) AND EX3 (TOLE.SOBACT) - 2, -7 OR -8). THEN GO TO EX5. IF EX2
(EXER. WLKSTRS) - 1 AND (EX2 (TOLE.CPACT) OR EX3 (TOLE.SOBACT) - 1), THEN GO TO EX33. IP EXI (EXER.NLKSTRS) = 2, -7 OR -8, GO TO Ex33.)

Ex5. Can you carry a light parcel up a flight of stairs, with or without symptoms?


EX7. When you (try to) carry a light parcel up a flight of stairs, do you get short of breath?
YES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFUSED.
DON'T RNOW

Ex8. When you (try to) carry a light parcel up a flight of gtairs, do you get hip or knee pain?

Ex8a. When you (try to) carry a light parcel up a flight of stairs, do you get excessively fatigued?
YES.
N0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFOSED.
DON'T KNOW
(SKIP: IF EX5 = 1, GO TO EX21. IF EX5 = 2, -7 OR -8, GO TO EX9.)
EX9. Can you garden, rake or weed, with or without symptoms?


ExIO. When you (try to) garden, rake or weed, do you get chest pain?


Ex11. When you (try to) garden, rake or weed, do you get short of breath?


Ex12. When you (try to) garden, rake or weed, do you get hip or knee pain?


Ex12a. When you (try to) garden, rake or weed, do you get excessively fatigued?

(SKIP: IF EX9 \(=1\), GO TO EX21. IF EX9 \(=2,-7\) OR -8, GO TO EX13.)
Ex13. Can you dance a fox trot, with or without symptoms?


Ex14. When you (try tol dance a fox trot, do you get chest pain?

EX15. When you (try to) dance a fox trot, do you get short of breath?


EX16. When you (try to) dance a fox trot, do you get hip or knee pain?
YES.
REFUSED.
DON'T KNOW
Ex16a. When you (try to) dance a fox trot, do you get excessively fatigued?

(SKIP: IF EX13 = 1, GO TO EX21. IF EXI3 = 2, -7 OR -8, GO TO EX17.)

Exi7. Cao you walk at brisk pace, say lour miles per hour, oo level ground witbout stopping, with or witbout sympome


Ex18. When you (try tol walk at brisk pace, say lour milea par bour, oo level ground without stopplog, do you get cheat paio?


Exig. Wheo you (try tol walk at a brisk pace, say four miles per bour, oo level ground without stoppiog. do you get short of breath?


Ex20; Wheo you ftry tol walk at a brisk pace, ay 2 our milas par bour, oo laval ground without etopping, do you get bíp or knea paio?


Exioa, What you fery tol walk at brisk pace. say tour ailas par bour, oo lavel ground vithout atoppiog, do you gat axcealvaly latigued?
YES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(SKIP: IP EXI (EXER, WLKSTRS) - 2 AND (EX2 (TOLE.CPACT) AND EXI (TOLE. SOBACT) - 2 , -7 OR - B), NND: IF EXI7 - 2 , THEN GO TO EX21. OTHERWISE, GO TO LSINTRO.)

Ex2l. Cao you carry at laast 24 pounds up 8 staps, with or without syaptoas?

-
Ex22. Whan you (try tol cargy at least 24 pounda up stapa, do you get chant pain?


Ex23. Wheo you (try tol carry at laast 24 pounde up staps, do you gat sbortoms of breath?


Ex24. When you (try to) carry at least 24 pounde up staps, do you get bip or knaa paio?


Ex24a. Wheo you (try to) carry st least 24 pounde up siteps, do you get excesaivoly tired?

(SKIP: IF EX21 - 1. GO TO LSINTRO. IF EX21 - 2, -7 OR - B, GO TO EX25.)
Ex25. Can you do outdoor vork auch an ahovel soow or apada soil, with or without symptome?


Ex26. When you (try tol do outdoor vork sucb as shovel snov or spade soil, do you get chest paio?


Ex27. When you ftry to) do outdoor work suck as shovel snow or spade soil, do you get shortness of breatb?


B-34

EX28. When you (try to) do outdoor work such as shovel snow or spade soil, do you get bip or knee pain?
YES
REFUSED
DON'T KNOW
1
2
-7
,

YES
NO.
REFUSED
DON'T KNOW
\(\square\)

IF EX25 = 1, GO TO LSINTRO. IF EX25 = 2, -7 OR -8, GO TO EX29.)
Ex29. Can you do a slow jog or very brisk walk at 5 miles per bour, witb or without symptoms?


Ex30. When you (try to) do a slow jog or very brisk walk at 5 miles per hour, do you get chest pain?


Ex31. When you (try to) do a slow jog or very brisk walk at 5 miles per bour, do you get sbortness of breath?
YES
REFUSED. 1
2
-7
DON'T KNOW
- 8

EX32. When you (try to) do a slow jog or very brisk walk at 5 miles per bour, do you get hip or knee pain?


EX32a. When you (try to) do a slow jog or very brisk walk at 5 miles per hour, do you get excessively tired?

(SKIP: IF EX29 \(=1,2,-7\) OR -8 GO TO LSINTRO.)
Ex33. Can you strip and make a bed, witb or witbout symptoms?

```

NO.
DON'T DO.
REFOSED.

```
REFUSED...
(Ex37)
(Ex37)
DON'T KNOW

1
NO.
FUSED 2
-7
-8
1
2
-7
RETUSED. \(\begin{array}{r}2 \\ -7 \\ \hline\end{array}\)
(LSINTRO)
EFUSED.


Ex38. When you (try tol mop floors, do you get cbest pain?


Ex39. When you (try tol mop tloors, do you get shortness of breatb?


Ex40. When you (try tol mop floors, do you get bip or knee pain?


Ex40a. When you (try to) mop floors. do you get excaseively tired?

(SKIP: IF EXI (EXER, MLRSTRS) - 1 AND (EX2 (TOLE.CPACT) OR EX3 (TOLE.SOBACT) = 1) AND: IF EX37 (EXER. KOPFLOOR) - 1, 2. -7 OR - 8 ,


 EX41.)

Ex41. Can you band wash clotbas, with or without syeptoas


Ex42. When you (try to) hand wanh clothea, do you get chat pain?


Ex43. Whan you (try to) band wash clothaa, do you get bortama of hraatb?


Ex44. Whan you (try to) band wagh clothes, do you get bip or kae pain?


EX44a. When you (try to) band wash clothas, do you get excasaivaly tirad?

(SKIP: IP EXI (EXER.WLRSTRS) = 1 AND (EX2 (TOLE.CPACT) OR EX3 (TOLE.SOBACT) = 1) AND: IF EX41 (EXER.RNDWSECE) - 1.2 . 7 ( OR - 8 ,


 EX4S.)

EX45. Can you walk 2.5 miles par bour, that is, a noreal pace for middla-ged roman, with or without symtom?


EX46. When you (try to) walk 2.5 miles per bour, that if, a normal pace for a middle-aged woman, do you get chest pain?


Ex47. When you (try to) walk 2.5 miles per hour, thet ls, normal pace for midde-aged voman, do you get abortness of breath?


EX48. When you (try to) walk 2.5 miles per hour, that is, a normal pace for a middle-aged woman, do you get hip or knee pain?


EX48a. When you (try to) walk 2.5 miles per hour, that is, a normal pace for a middle-aged woman, do you get excesively tired?

(SKIP: IF EX1 (EXER.WLKSTRS) \(=1\) AND (EX2 (TOLE.CPACT) OR EX3 (TOLE.SOBACT) = 1) AND: IF EX45 (EXER.WLK2MPH) = 1, 2 , -7 OR -8, AND (EX46 (TOLE.CPACT) OR EX47 (TOLE.SOBACT) E 1), THEN GO TO EX53; OR IF EX45 (EXER. WLK \(2 M P H\) ) \(=1\), 2 , -7 OR -8 , AND (EX46
(TOLE.CPACT) AND EX47 (TOLE.SOBACT) \(=2,-7\) OR -8 ), THEN GO TO EX5. IF EX1 (EXER. WLKSTRS) \(=2\), \(-7,-8\) OR 3 , AND: IF EX45 (EXER.WLK2MPH) \(=1\) AND (EX46 (TOLE.CPACT) OR EX47 (TOLE.SOBACT) \(=1\) ), THEN GO TO EX53; OR IF EX45 (EXER.WLK2MPH) = 1 AND (EX46 (TOLE.CPACT) AND EX47 (TOLE.SOBACT) \(=2\), -7 OR -8), THEN GO TO LSINTRO; OR IF EX45 (EXER. WLK2MPH) = 2 , -7 OR -8, THEN GO TO EX49.)

EX49. Can you bowl, with or without symptoms?


Ex50. When you (try to) bow1, do you get chest pain?


EX51. When you (try to) bowl, do you get shortness of breath?

EX52. When you (try to) bowl, do you get hip or knee pain?
YES
NO. . . .
RON'T KNO
(EX53)
REFUSED..
\(\square\)
DON' T KNOW
-

DON'T KNOW

When you (try to) bowl, do you get excessively tired?

(SKIP: IF EX1 (EXER.WLKSTRS) = 1 AND (EX2 (TOLE.CPACT) OR EX3 (TOLE.SOBACT) = 1) AND: IF EX49 (EXER.BOWL) =1, 2 , -7 OR -8, AND (EX50 (TOLE.CPACT) OR EX51 (TOLE.SOBACT) = 1). THEN GO TO EX53; OR IF EX49 (EXER.BOWL) = 1, 2 ; - 7 OR -8, AND (EX50 (TOLE.CPACT) NND EX51 (TOLE. SOBACT) \(=2,-7\) OR -8), THEN GO TO EX5. IF EX1 (EXER. WLKSTRS) \(=2,-7,-8\) OR 3 , AND: IF EX49 (EXER. BOWL) \(=1\) AND (EX50 (TOLE.CPACT) OR EX51 (TOLE.SOBACT) \(\mathcal{L}\) ), THEN GO TO EX53; OR IF EX49 (EXER. BOWL) = 1 AND (EX50 (TOLE.CRACT) AND EX51 (TOLE.SOBACT) \(=2,-7\) OR -8 ), THEN GO TO LSINTRO; OR IF EX49 (EXER.BOWL) \(=2\), -7 OR -8, THEN GO TO EX53.)

EX53. Can you dress without stopping because of symptoms?


EX54. When you (tyy to) dress without stopping, do you get chest pain?


EX55. When you (try to) dress without stopping, do you get shortness of breath?


EX56. When you (try to) dress without stopping, do you get hip or knee pain?


EX56a. When you (try to) dress without stopping, do you get excessively tired?


 (TOLE.CPACT) AND EXS5 (TOLE.SOBACT) - 2, -7 OR -8), THEA GO TO EX5. IF EXI (EXER. WLKSTRS) E 2 , -7, -8 OR 3, AND: IF EXS3 (EXER.DRESSING) = 1 NND (EXS4 (TOLE.CPACT) OR EXSS (TOLE.SOBACT) - 1). TEEV GO TO EX69, OR IF EXS 3 (EXER.DRESSING) - 1 MND (EXS4 (TOLE.CPACT) AND EX55 (TOLE.SOBACT) - 2, -7 OR -8), THEN GO TO LSINTRO, OR IF EXS3 (EXER, DRESSING) - 2 . -7 OR - 8 , TEEN GO TO Ex57.)

Ex57. Can you iron with or without symptoms?


Ex58. When you (try to) izon, do you get cheet paln?


Ex59. When you (try to) iron, do you get bortaees of breath?


Ex60. When you (try tol iron, do you get hip or knee pala?


Ex60a. When you (try to) iron, do you get excessively tired?

 AND (EXS8 (TOLE.CPACT) OR EX59 (TOLE.SOBACT) - 1). THES GO TO EX69, OR IF EXS7 (EXER.IRONING) - 1, 2 . -7 OR -8, AND (EX58
 (EXER. IRONING) - 1 AND (EXSA (TOLE.CPACT) OR EX59 (TOLE.SOMACT) - 1). THEN GO TO EX69, OR IF EX57 (EXER.IRONING) - 1 AND (EX5A (TOLE.CPACT) AND EXS9 (TOLE.SOBACT) - 2, -7 OR - B), THEN GO TO LSIMTRO, OR IF EX57 (EXER.I2ONING) - 2 . -7 OR - 8 , TEEN GO TO EX61.)

Ex61. Can you gtand 20 r 2 bours with or without ympons?


Ex62. When you (try to) tand for 2 boure do you get cheet pain?


Ex63. When you (try to) stand for 2 hours, do you get shortnese of breath?


EX64. Whan you (try to) etand lor 2 bours, do you get hip or kee pain?


Ex64a. When you (try tol stand for 2 boure, do you get excesively tired?

(SXIP: IF EXI (EXER,WLKSTRS) - 1 AND (EX2 (TOLE.CPACT) OR EX3 (TOLE.SOBACT) - 1) AND: IF EX61 (EXER.STND2ERS) - 1 , 2, - 7 OR - 8 ,
AND (EX62 (TOLE.CPACT) OR EX63 (TOLE.SOBACT) =1). THEN CO TO EX69, OR IF EX62 (EXER.STND2HRS) = 1. 2 , -7 OR -8, AND (EX62
(EXER.STND2\&RS) - 1 AND (EX62 (TOLE.CPACT) OR EX63 (TOLE.SORACT) - 1). TEEN GO TO EX69, OR IF EX61 (EXER.STND2ERS) - 1 AND (EX62
(TOLE.CPACT) AND EX63 (TOLE.SOBACT) - 2, -7 OR -8) THEN GO TO LSINIRO, OR IF EX61 (EXER.STND2ERS) - 2 , -7 OR - 8 , TEEN GO TO
(TOLE, CP
Ex65. Can you participate in a card game or bingo with or without sympoms?
YES.......
NO.
DONT TO
(EX69)
REFOSED
DON'T RNOW

 AND (EX66 (TOLE.CPACT) OR EX67 (TOLE.SOBACT) = 1), THEN GO TO EX69; OR IF EX65 (EXER.CARDGAME) \(=1\), 2 , -7 OR -8 , AND (EX66 (TOLE.CPACT) AND EX 67 (TOLE.SOBACT) \(=2,-7\) OR -8), THEN GO TO EX5. IF EXI (EXER.WLKSTRS) \(=2\), -7 , -8 OR 3 , AND: IF EX65 (EXER. CARDGAME) E 1 AND (EX66 (TOLE.CPACT) OR EXG7 (TOLE.SOBACT) \(=1\) ), THEN GO TO EX69; OR IF EXG5 (EXER.CARDGAME) = 1 AND (EXG6 (TOLE. CPACT) AND EX67 (TOLE.SOBACT) \(2,-7\) OR -8), THEN GO TO LSINTRO; OR IF EX65 (EXER. CARDGAME) \(=2\), -7 OR -8 , THEN GO TO EX69 IF EX1 (EXER. WLKSTRS) =-1 (INAPPLICABLE) AND EX66 (TOLE.CPACT) OR EX67 (TOLE.SOBACT) = 1, THEN GO TO EX69. OTHERWISE, GO TO LSINTRO.)

Ex69. If you sit quietly in a chair, do you get chest pain?

EX70. If you sit quietly in a chair, do you get shortness of breath?

(SKIP: IF EX1 (EXER.WLKSTRS) = 1 AND (EX2 (TOLE.CPACT) OR EX3 (TOLE.SOBACT) = 1) AND: IF EX69 (EXER.CPSITING) OR EX70
(EXER.SOBSITNG) = 1, THEN GO TO EX5; OR IF EX69 (EXER.CPSITING) AND EX70 (EXER.SOBSITNG) = 2 THEN GO TO EX5. IF EXI (EXER.WLKSTRS) \(=-1,2,-7,-8\) OR 3, AND: IF EX69 (EXER.CPSITING) OR EX7O (EXER.SOBSITNG) \(=1\), THEN GO TO LSINTRO; OR IF EX69 (EXER.CPSITING) AND EX70 (EXER.SOBSITNG) \(=2\) THEN GO TO LSINTRO.)

\section*{SECTION LS: PERCEIVED QUALITY OF LIFE}

\section*{LSINTRO. Now, I want to talk to you about your satisfaction with your health and other fundamental aspects of your life. I want} you to think about your own life situation and tell me just how satisfied or dissatisfled you are.
Ls-1. Using this card (where 0 is extremely dissatisfied and 10 is very satisfied), how satisfied are you with your physical health, that is, the bealth of your body?
[HAND SHOW CARD I TO RESPONDENT.]

\section*{LEVEL OF SATISFACTION}

LS-2. (Using this card (where 0 is extremely disgatisfied and 10 is very satisfied), how satisfied are you with. . .) how well you care for yourself, for example, preparing meals, bathing or shopping?
[HAND SHOW CARD I TO RESPONDENT.]
\(\overline{\text { LEVEL OF SATISFACTION }}\)
LS-3. (Using this card (where 0 is extremely dissatisfied and 10 is very satisfied), how satisfied are you with. . .) how well you think and remember?
[HAND SHOW CARD I TO RESPONDENT.]

LEVEL OF SATISFACTION

LS-4. (Using this card (where 0 is extremely dissatisfied and 10 is very satisfied), how satisfied are you with. . .) the amount of walking you do?
[HAND SHOW CARD I TO RESPONDENT.]

\section*{LEVEL OF SATISFACTION}

LS-5. (Using this card (where 0 is extremely dissatisfied and 10 is very satisfied), how satisfied are you with. . .) how often you get outgide the house, for example, going into town, using public transportation or driving?
[HAND SHOW CARD I TO RESPONDENT.]

LEVEL OF SATISFACTION

```

you carry on a conversation, for example, apeaking clearly, bearing othera, or helng understood?
\HAND SHOW CARD I TO RESPONDENT.〕

```

LEVEL OF SATISFACTION
LS－7．（Uaing this card（where 0 is extremely disetisiled and 10 in very setisfied），bou satisfied are you with．f the kind and amount of tood you eat？
［HAND SHON CARD I TO RESPONDENT．］

LEVEL OP SATISFACTION
```

LS-8. (Using this card (where 0 is extrmely dissetisfied and lo in very gatisfled), bow gatisfied are you with. .) bow often you see or talk to your family and friende？

```
［HAND SHOW CARD I TO RESPONDENT．］

LEVEL OF SATISFACTIOA
LS－9．（Jaing this card（where 0 is extremely dinetifiled and 10 in very getisfed），bow setisfied ere you with．．）the belp you get irom your family and iriends，for example，belplag in en emergency，fixing your boule，or doing errends？
［BAND SHOW CARD I TO RESPONDENT．］

\section*{LEVEL OF SATISFACTION}
 you give to your family and iriende？
［HAND SHOW CARD I TO RESPONDENT．］

\section*{LEVEL OF SATISPACTION}
 contribution to your comunity，for examie，a nighborbood，religious，political or otber group？

〔HAND SHON CARD I TO RESPONDENT．］

LEVEL OF SATISFACTION
LS－12．（Uaing this cerd（where 0 in extremely disatigited end 10 is very setisfied），how setiafied ere you vith．．）your retirement or current job？

〔HAND SHOW CARD I TO RESPONDENT．〕

LEVEL OP SATISFACTION
 and amount of recreetion or leisure you beve？

〔HAND SHOW CARD I TO RESPONDENT．〕

LEVEI OF SATISPACTION
LS－14．（Vaing this card（where 0 is extremely disatisfied end 10 is very setisfied），hov satisfled ere you vith．．）your level of sexual activity or lack of sexual ectivity？
（HAND SHON CARD I TO RESPONDENT．）

LEVEL OF SATISFACTION
```

LS-15. (Using this card (whore 0 is oxtremely disuatiulled ond lo is very uatiufled), how setigfled are you with.. .) the vay your income meets your needs？

```
［EAND SEON CARD I TO RESPONDENT．］

LEVEL OF SATISFACTION
 respected you are by others？
［BAND SHOW CARD I TO RESPONDENT．］

LEVEL OF SATISPACTION
 meaning and purpoas of your life？
［HAND SHOW CARD I TO RESPONDKNT．］

LEVEL OF SATISPACTION
wS－18．（Uaing this card（where 0 is extremely dissatisiledand 10 is very satisfled），bov satisfied are you vith．．）tbe amount of variety in your life？
［HAND SHOW CARD I TO RESPONDENT．〕

LEVEL OF SATISPACTION

B－40

LS18a. (Using this card (where 0 is extremely dissatisfied and 10 is very satisfied), how satisfied are you with. . .) the amount and kind of sleep you get?

LEVEL OF SATISFACTION

LS-19. Now, using this scale, please tell me how happy you are? [HAND SHOW CARD J TO RESPONDENT.]

LEVEL OF EAPPINESS
SECTION PU: PULMONARY
PUINTROA. Next, I have some more questions about your health.
PO1. Do you usually cough on getting up, first thing in the morning?


PU2. Do you usually cough during the rest of the day or during the night?


SKIP: IF PUl AND PU2 \(=2,-7\) OR -8 , GO TO PU5. IF PUI OR PU2 \(=1\), CONTINUE.
PU3. Have you had this cough for...
\begin{tabular}{|c|c|c|}
\hline Less than 1 month, & 1 & (PU5) \\
\hline 1-6 months. & 2 & (PU5) \\
\hline 7-12 months, or & 3 & (PU5) \\
\hline More than 1 year? & 4 & (PU4) \\
\hline REFUSED. & -7 & (PU5) \\
\hline DON'T KNOW. & -8 & (PU5) \\
\hline
\end{tabular}

PU4. For how many years have you had this cough?

YEARS HAD COUGH
PU5. Do you usually bring up phlegm on getting up, first thing in the morning?
YES
NO.
REFUSED
1
2
DON'T KNO
-7
-8

PU6. Do you usually bring up phlegm during the rest of the day or during the night?
 1
-7
-8
DON'T KNOW.
SKIP: IF PU5 AND PU6 = 2, -7 OR -8 , GO TO PU9. IF PU5 OR PU6 \(=1\), CONTINUE.
PU7. Have you had this trouble with phlegm for .
\begin{tabular}{|c|c|c|}
\hline Less than 1 month, & 1 & (P09) \\
\hline 1-6 months, & 2 & (PU9) \\
\hline 7-12 months, or & 3 & (P09) \\
\hline More than 1 year? & 4 & (PV8) \\
\hline REFUSED. & -7 & (P09) \\
\hline
\end{tabular}
pu8. How many years have you had this trouble with phlegm?

YEARS WITH PHLEGM
PU9. Does your chest ever sound wheezy or whistling when you have a cold?

pu10. Does your chest ever sound wheezy or whisting apart from when you have a cold?

po11. Does your chest sound wheezy or whistling most days or nights?

po12. Have you had this whistilag sound for
    Less than 1 month. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    (P014)
\(\frac{1}{2} \quad\) PO
    -6 montha,....
    7-12 months or.:
    hore than
    REFUSED....
    (PO14)
(PO14)
PU13. For bow many years bas this wheezy or whiseling sound been present?
YEARS
PO14. Have you ever bad an attack of wheezing that bas made you seel abort of breath?

PO15. How old vere you when you had your iirst sucb attack?
YEARS OLD
pO16. Bave you had two or more auch eplsodes?
YES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NO.
RETUSED.
DON'T KNOW. . . . . .
P017. Have you ever zequired medicine or treathent for the(ae) attack(a)?

Po18. When was your mote recent actack of vbeeslag that required mediclat or treatment?
MONTH \(/ \frac{1}{\text { DAY }}\) YEAR
pu19. Bas a doctor ever told you that you had chronic bronchitis?

PO20. Do you still have it?

pU21. How old were you when it started?
```

YEARS OLD

```
PO22. Has a doctor ever told you that you bad exphysema?

PO23. Yov old vere you when it gtarted?
YEARS OLD
po24. Has a doctor over told you that you had asthana?

PO25. How old were you when de started?
YEARS OLD
P026. Do you st111 bave \(1 t\) ?

P027. How old were you when it stopped?

B-42

P028. Have you been treated for pneumonia in the last 5 years?

po29. How long ago did you last have pneumonia?

p030. Did you require a stay in the hospital for treatment?


PO31. Have you ever had swelling of your feet or ankles?

p03la. Have you had this swelling in only one foot or ankle or was it in both feet or ankles?

p032. Did the swelling tend to come on during the day and go down at night or not?
TENDED TO COME ON DURING DAY
AND GO DOWH AT NIGET.................................................... 1

OTHER (SPECIFY)........................................................................................ 91

po33. Do you get pain in either leg when you walk?


P034. Does this pain ever begin when you are standing still or sitting?

```

 NO..
 REFUSED..
    ```
PO35. Do you get this pain in your calf or calves?

    REFUSED...........................................................................................................................................
    P036. Do you get this pain when you walk up hill or hurry?
-7
-8
po37. Do you get this pain when you walk at an ordinary pace?


PU38. Does this pain ever disappear while you are walking?


PO39. What do you do if you get this pain in your legs while you are walking?
STOP OR SLOW DOWN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
CONTINUE AT SAME PACE............................................................................................................................... 91
OTHER (SPECIFY).......
REFUSED . ........................................................................
DON'T RNOW
\(-8\)

Pu40. If you ataod atill is tha paio raliavad?


PU41. Eow a000 it it ralleved?
```

10 MINUTES OR LESS.
ORE TEAN 10 MINOTES
REFOSED. .
DON'T RNOW

```
10 it ralleved


\section*{BLOCRS}

Pण43. Io the paat month, oo tha avarage, have you baeo laellog unusually tired duriog the day?


Pu44, Have you beao gaallog unuaually tired.

PO45. Io tha pagt mooth, have you lelt uousually veak?


P046. Hava you baen leelligg unueuelly veak...

 most anergy that you heve ever bed. Pleese give ma oumber hetweao ood lo that describes your usul eoergy level. while avake to tha lant month

【HAND SBOW CARD K TO RESPONDENT.〕

\section*{PNERGY LEvEL}
 TO POS7. OTHERWISE, GO TO PU48e.
pOINTROB. Next I golog to reed list of ectivitien to find out if you bave done chem lo the past evo reeka.
p048a. Duriog the pest two weeks beve you walked for exercise?


PU48h. How oftoo hava you ralked for exercise in the pest 2 reeks?

NUMBER OF TIMES
po48c. Mhat 1a the averaga amount of time that you spent per sessioo?
gours. MINUTES2
pu48d. How many mooths per yaar do you walk for exercise?

MONTES
pU49a. Duriog the pat two woeks have you done moderatoly ftrenuous bousebold chores, lika scrubhiog aod vacuuming?


PO49h. Bow often have you dooe moderately strenuous household choras, like scrubbiog aod vacuuming, io the patt 2 veeks?

NUMPER OF TIMES
p049c. What 1 a the average amount of time that you gpent par aamioo?
HOURS
MINUTES.
1
2

B-44

PU49d. How many months per year do you do moderately strenuous household chores, like scrubbing and vacuuming?

\section*{MONTHS}
pu50a. During the past two weeks have you done moderately strenuous outdoor chores like mowing or raking the lawn, shoveling snow, or working in the garden?

pU50b. How of ten have you done moderately strenuous outdoor chores, like mowing or raking the lawn, shoveling snow, or working in the garden, in the past 2 weeks?

NUMBER OF TIMES
PU50c. What is the average amount of time that you spent per segsion?
Hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\quad 1\)
MInUTES
2
pu50d. How many months per year do you do moderately strenuous outdoor chores like mowing or raking the lawn, shoveling snow, or working in the garden?

MONTHS
pusla. During the past two weeks have you danced?


PU5lb. How often have you danced in the past two weeks?

NOMBER OF TIMES
PU51c. What is the average amount of time that you spent per session?
HOURS.
1
2
pu5ld. How many months per year do you dance?
MONTHS

PU52a. During the past two weeks have you gone bowling?


PU52b. How of ten have you gone bowling in the past 2 weeks?

NUMBER OF TIMES
pu52c. What is the average amount of time that you spent per segsion?
HOURS.
MINUTES.
1
PU52d. How many months per year do you go bowling?

\section*{MONTHS}
p053a. During the past two weeks have you participated in any regular exarcise program such as stretching or strengthening exercises, swimming or any other regular exercise program?

pU53b. How of ten have you participated in any regular exercise program, such as stretching or strengthening exercises, swimang or any other regular exercise program, in the past 2 weeks?

pu53d. How many months per year do you participated in any regular exercise program such as stretching or strengthening exercises, swimming or any other regular exercise program?
```

P054. Think about the walking you do outside your home. Durígg the lagt veek, about bov many city blocks or their equivalent did

```
you walk? (Let 1 mile. 12 city blocks.)
    [ENTER ' \(O\) ' IF LESS TEAN ONE BLOCK.]
\(\qquad\)

P055. When you walk outside your home, what is your usual pace? Would you say...
Casual strolling, from 0 to 2.0 mph........................... 1
Average or normal, from 2.0 to 3.0 mph
Pairly briskly, from 3.0 to 4.0 mph , or
Brigk or etriding, greater than 4.0 mph?
NO WALKING AT ALL
REFOSED
DON'T JONOW \(\square\)
P056. Tbiak about bow often you use gtaira. Include atairg inaide and outaide your home, and etairs at otber places. In the last week, about bow many flights of ataira did you climb up?

PLIGETS OF STAIRS
po57a. How many boura do you usually sleep at night?

HOURS SLEEP AT NIGHT
po57b. Bow many bours do you usually aleep during the day?

HOURS SLEEP DURING DAY
po57c. Bow many boura are you aitting or lying down during the day \((\), otber than when you are aleepingl?

HOURS SITTING OR LYING
P058. Do you attend church or church functions?


P059. Hov often do you attend church or church functions? would you say..
```

More than once a veek.
Once a week,
2-3 times a month
Once montb, or.
less than once a montb?
RETUSED.
DON'T KNOW

```
1
2
3
4
5
-7
-8

PO60. Did you use to attond church or cburcb functions more frequently, less freguently, or bas there been no change?


PO61. Do you attend other evonts such as concerts, sovies, or othic fentivale?


P062. How often do you attend otber events? would you say...
```

More than once a week. ...
Once a veek,......
Once a month
once a month, or.
Less than once a
REFOSED.
DON'T KNOW.

```

SECTION NE: NEUROLOGIC

NEINTROA. Now I have some more questions about otber conditions and hov they flect you (SKIP: IF S4b (HRND.SCRSTROK) - 2, -7 OR - 8 GO TO BOZ NE5. OTEERWISE, GO TO NE1.) NE1. Earlier you mentioned that a doctor baa told you that you have had a groke.

PARTICIPANT MAINTAINS EARLIER RESPONSE PARTICIPANT CHANGES EARLIER RESPONSE.

1
(SKIP: IF 1 SET NE1 (NEUR.STROKE) - 1, GO TO NE2. IF 2 SET NE1 (NEUR.STRORE) - 2. THEN GO TO BOX NES.
NE2. How many atrokes bave you had?

STRORES
(SKIP: IP NE2 (NEUR.STROKNOM) - 1, GO TO NE4. OTHERWISE, GO TO NE3.)
NE3. What was the date of your first stroke?


NE4. What was the date of your (most recent) stroke?


NE5. What was the name of the doctor who diagnosed your (most recent) stroke? (See AR3.)
NE5a. What is (PROVIDER)'s address? (Same as AR4.)
NE6. Have you ever been hospitalized for a stroke?


NE7. What was the name of the hospital where you were (most recently) hospitalized for atroke? (See AR8.)
NE7a. What is (PACILITY)'s address? (Same as AR9.)
NE8. When were you admitted to the hospital?

(SKIP: IF ANY ADMISSION DATE FIELD MISSING (ADMTNMR, ADMTNDD, OR ADMTNYY = -7 OR -8), THEN GO TO NE8A. OTHERWISE, GO TO NE9.) NE8a. When were you discharged?


NE9. After (any of) your stroke(s), did you have weakness in your left face?


NE9a. Do you still have the problem?


NE10. After (any of) your stroke(s), did you have weakness in your left arm or hand?


NE10a. Do you still have the problem?

NE11. After (any of) your stroke(s), did you have weakness in your left leg or foot?


NE1la. Do you still have the problem?


NE12. After (any of) your stroke(s), did you have weakness in your right face?


NE12a. Do you still have the problem?


NE13. After (any of) your stroke(s), did you have weakness in your right arm or hand?


NE13a. Do you still have the problem?


NE14. After (ady of your etroke(s), did you bave woaknesa in your right leg or loot?


NE14A. Do you still have the problem?


NE15. D\&d you bave a sudden loss or change in peech esesult of (ony of) your stroke(s)?


NE16. Do you still bove this problem?


NE17. Do say of the following describe your change in spech. Your speech was slurred like you were drunk Does that describe your change in speech?


NE17a. Do you Et111 hove the problem?


NE18. You could telk, but the wrong words case out. Does thet deacribe your change in foech?


NE18a. Do you stsil hove the prohlam?


NE19. You knew what you wonted to sey, but the words would not come out. Does that describe your chenge in apeech?


NE19a. Do you etill have the problem?


NE20. You could not think of the right vords. Does that describe your chenge in speech?


NE20a.
Do you et111 have the problem?

 TO NE22.)

NE21. Which of these descriptions most closely describes your spoech problems?

SPEECA PROBLEM DESCRIPTION

NE22. After (any of) your stroke(s), did you have sudden loss or blurring of vision, either complete or partial?
YES
No. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RON'T
1
2
-7
(NE26)
(NE26)
(NE26)

NE23. Which eye was affected...

Both eyes
3
-7
DON'T KNOW.
\(-8\)

NE24. Did you have trouble seeing
To the right but not to the left;
To the left but not to the right
With both eyes or straight ahead?
REFOSED....
NE25. Do you still have this problem with your eyes?


NE26. Did you have sudden numbness, tingling, or loss of feeling in either side of your body, including your face, arm or leg, as the result of any stroke?


NE27. Was the numbness, tingling or loss of feeling in...

NE28. Do you still have numbness, tingling or loss of feeling?

NE29. Did you have sudden dizziness, loss of balance, or a sensation of spinning as the result of a stroke?


NE30. Do you still have dizziness or loss of balance?


NEINTRO. Next I will ask you some additional questions about your concentration and your memory.
NE31. Please count from 1 to 5.
CORRECT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
0
NE32. Now I would like you to count backward from 5 to 1.
[CODE RESPONSE USING CODES EELOW.]
\(\begin{aligned} & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 1=\end{aligned}=\)
CORRECT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NE33. [POINT TO THE PART OF YOUR BODY.] What do you call this part of your (face/body)?
\begin{tabular}{ll} 
a. & Forehead \\
b. & Chin \\
c. & Shoulder \\
d. & Elbow \\
e. & Knuckle
\end{tabular}
Knuckle

CORRECT
ERROR/REFUSED
NOT ATTEMPTED
1


NE34. What andmals have four legs? PROBE ONCE: Can you think of any others?
[INTERVIEWER: THIS QUESTION IS A TIMED EXERCISE. ALLOW THE RESPONDENT ONLY 30 SECONDS TO ANSWER THIS QUESTION.J
\(\qquad\)
(TOTAL NOMBER \(\qquad\) _1
NE35. Please repeat what I ay: I would lite to go (bome/out).
CORRECT.
1 OR 2 WORDS MISSED.
2
1
0
(BOX NES. IP S4K (ERND. SCRPRINS) - 2, -7 OR - 8 GO TO NE43. OTHERNISE, GO TO NE36.)
NE36. Earlier you wentloned that doceor bae rold you that you heve parkineon a diesase
PARTICIPANT KAINTAINS EARLIER RESPONSE...................................................... \(\frac{1}{2}\)
PARTICIPANT CHANGES EARLIER RESPONSE...........
(SKIP: IF 1 SET NE3 6 (NEUR. BASPRTRS) - 1, THEN GO TO NE37. IF 2 SET NE36 (NEUR. BASPRENS) - 2. THEN GO TO NE43.) NE37. At what age wera you firgt cold you bed Parkinson'g diseage?

YEARS OLD
NE38. Are you currently besag treated for Parksaron' dssease?


NE39. What is the name of the doctor who datreating you. (Sea AR3.)
NE40. What 1s (PROVIDER)' addrasa? (Sama at AR4.)
(SKIP: IT NE3B - 1, GO TO NE43.)
NE41. What was the name of the last doctor you an for parkinaon's disase? (Siellar to AR4.)
NE42. What is (PROVIDER)'s adrass? (Same as A.)
NE43. Do you have trouble rialng Prom a chadr?
YES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NE44. Is your handwriting sallar than it once was?


NE45. Do people tell you that your volce ds softar than it onca was?


NE46. Is your balance poor?

NE47. Do your feet suddenly seem to freeze In doorway?

NE4B. Do people tell you that your face seems lass exprassive than it once did?

NE49. Do your arms or lags shake?


NESO. Do you sbuffle your feet or take tiny stepa when you walk?


B-50

NE51. Have you ever taken L-dopa or Sinemet?


NE52. Is your sensation or sense of feeling normal or abnormal?

(NE63)
\(\begin{array}{ll}\text { ABNORMAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } & -8 \\ \text { REFUSED. . } \\ \text { DON'T KNOW. . . . . }\end{array}\)
NE53a. Is your abnormal sensation found in your legs or feet?


NE53b. Is your abnormal sensation found in your arms or hands?


NE54. Have you ever burned yourself without feeling pain?


NE55. What was the date of the most recent burn?


NE56. Do you have a prickly-asleep-numbness feeling of the feet, like when your hand goes to sleep from lying on it?


NE57. Does the numbness come only for a few minutes each time or does it last longer than that?

NE58. Is it present most of the time?


NE59. Have areas of numbess appeared and persisted for more than a few hours in different parts of your body?


NE60. In your feet, do you have dead-asleep numbness, like novocaine, without prickling?


NE61. Does the numbess come only for a few minutes at a time or does it last longer than that?


NE62. Is it present most or all of the time?


NE63. Have you fainted during the past year?


NE64. How many times did you faint in the past year?

\footnotetext{
TIMES
}

NE65. Did this happeo when you were staodiog or seated or both?
\begin{tabular}{|c|c|}
\hline STANDING. . & 1 \\
\hline SEATED. & 2 \\
\hline Вотн. & 3 \\
\hline OTEER (SPECIFY) & 91 \\
\hline REFOSED. & -7 \\
\hline DON'T ICNOW. & -8 \\
\hline
\end{tabular}

NE66. Do you faiot more frequeotly oow thao ooe year ago, less erequeotly, or about the same?

NE67. Do you ever lose cootrol of oormal bowal movemeots so that you soll youraele?


NE68. Do you bave some control or no control?


NE69. Do you have occagional solliog or does it happao all the time?


NE70a. In the last year hava you bad any problem with pain, burniog or gtiogiog wheo you urinate?


NE70b. Io tha last yaar baya you bad any problem witb uriosey tract dofactions?


NE70c. In the last year have you had any problem witb blood io your urioa?


NE70d. Io the lagt year bava you bad any problem with accidentally losiog cootrol of your urina or bladder functioo that le, do you wet yourself?

CATHE
DON' T RNOW


NE700. In the last year bave you bad soy problem with losiog cootrol of your urioa whan you cough, saeeze, laugh, or lift thioga?


NE70f. Io the last yesr bave you bad any problem with losiog cootrol of your urioe because you could not gat to the toilat guickly enougb?

(SRIP: IP NE70d. NE70E OR NETOE - 1, GO TO NE71. OTEERNISE, GO TO CAINTRO)
NE71. During the past month, bow often bave you lost cootrol of your urioe? would you aly


NE72. When you lose control of your urine, approximately how much urine do you lose? Would you say
A few drops,
Less than or equal to 1 teaspoon, ............................................ 2
More than 1 teaspoon, but Less than or equal to \(1 / 4\) cup, or
More than \(1 / 4\) cup?
REFUSED...

NE73. How many times during a typical night do you get up to urinate?

TIMES PER NIGET

\section*{SECTION CA: CANCER}

CAINTRO. Now, I'd like to ask you about other diseases
(SKIP: IF S4i (ERND.SCRCANCR) =2, 7 OR -8, THEN GO TO CA35. OTHERWISE, GO TO CA1.)
CA1. Earlier you mentioned that a doctor has told you that you had cancer.
PARTICIPANT MAINTAINS EARLIER RESPONSE
PARTICIPANT CHANGES EARLIER RESPONSE.................................................. 2
(SKIP: IF 1 SET CA1 (HRND.BASCANCR) =1, THEN GO TO CA2. IP 2 SET CA1 (HRND.BASCANCR) = 2, THEN GO TO CA35.)
CA2. Where was the most recent tumor or malignancy located? (What type of cancer did you have?)
(PROBE: Were there any other places?) [CODE ALL THAT APPLY.]
\begin{tabular}{|c|c|c|c|}
\hline BRAIN. & 1 & LYMPE GLANDS. & 8 \\
\hline BREAST. & 2 & MELANOMA. & 9 \\
\hline CERVIX. & 3 & MULTIPLE MYELOMA. & 10 \\
\hline COLON/BOWEL . & 4 & RECTUM. & 11 \\
\hline ESOPHAGUS. & 5 & SKIN. & 12 \\
\hline LEUKEMIA. & 6 & STOMACH & 13 \\
\hline LONG. . & 7 & UTERUS & 14 \\
\hline OTHER (SPECIFY) & & & 91 \\
\hline OTHER (SPECIFY) & & & 92 \\
\hline OTHER (SPECIFY) & & & 93 \\
\hline
\end{tabular}

CA3. In what month and year were you first told by a doctor that you had (CA2 CANCER)?
MONTH YEAR
CA4. What was the name of the doctor who told you that you had this cancer? (See AR3.)
CA5. What is (PROVIDER)'s address? (See AR4.)
CA6. Has a doctor told you that the (CA2 CANCER) has spread to parts of your body beyond where it started?


CA7. Where did the cancer spread? [CODE ALL THAT APPLY.]
\begin{tabular}{|c|c|c|c|}
\hline BRAIN. & 1 & LYMPE GL & 8 \\
\hline BREAST & 2 & MELANOMA & 9 \\
\hline CERVIX. & 3 & MULTIPLE & 10 \\
\hline COLON/BOWEL & 4 & RECTUM. & 11 \\
\hline ESOPHAGUS. & 5 & SKIN. & 12 \\
\hline LEUKEMIA. & 6 & StOMACE. & 13 \\
\hline LUNG. & 7 & UTERUS. & 14 \\
\hline OTHER (SPECIFY) & & & 91 \\
\hline OTHER (SPECIFY) & & & 92 \\
\hline
\end{tabular}

CAs. Were you ever hospitalized overnight or longer for this (CA2 CANCER)?

\section*{YES}

NO.....
REFUSED..
DON'T KNO
CA8a. How many times were you hospitalized for this cancer?

\section*{TIMES}
(SKIP: IF CA8a > 1, -7 OR -8, THEN GO TO CA9. OTHERWISE, GO TO CAII.)
CA9. What was the name of the hospital you first stayed in for this cancer? (See AR8.)
CA9a. What is (PACILITY)'s address? (See AR9.)
Calo. When were you admitted to the hospital?

(SKIP: IF ANY ADMISSION DATE PIELD MISSING (DATS. DATEIMM, DATEIDD OR DATEIYY \(=-7\) OR -8), THEN GO TO CAIOA. OTHERWISE, GO TO
CAloa. When were you discharged?

```

CA11. What was the name of the bospltal you (last) stayed lo for this cancer? (See AR\&.)
Calla. What is (FACILITY)'s addrese? (Same as AR9.)
CA12. When were you admitted to the bospital? (See CAlO.)
(SKIP: IF ANY ADMISSION DATE FIELD MISSING (DATS. DATEINM, DATEIDD OR DATEIYY - -7 OR - 8), THEN GO TO CAI2Q. OTHERNISE, GO TO
CA13.)
CAl2a. Wheo were you discharged? (See CAlOa.)
CA13. Have you had surgery for the (CA2 CANCER)?

```

```

CAl3a. How many times did you have uurgery for thds caocer?
TIMES
(SXIP: IFCAI3A > 1. -7 OR = 8, TEEN GO TO CAI4. OTHERWISE. GO TO CA16.)
Cal4. Where was the \&irst surgery performed? (See AR8.)
CAl4a. What 10 (FACILITY), address. (Same e= AR9.)
CA15, Wheo were you sdmitted to the hospitel? (See cal0.)
(SKIP: IF ANY ADMISSION DATE FIELD MISSING (DATS. DATEIMO, DATELDD OR DATEIYY - -7 OR -8), THEN GO TO CAISE. OTEERWISE. GO TO
CA16.)
CAl\$a. Wheo were you discharged? (See CAl0..)
CA16. Where wes the (most receot) surgery performed? (See AR\&.)
CAl6a. Wbat 1s (%ACILITY)'s eddress? (See AR9.)
CAl7. Wheo were you smitted to the bospitel? (See CA10.)
(SXIP: IF ANY ADMISSION DATE PIELD MISSING (DATS. DATEIMOR, DATEIDD OR DATEIYY - -7 OR - 8), THEN GO TO CAITG. OTEERNISE, GO TO
CA18.)
CAl7a. Wheo were you dipchorged? (See CAlOa.)
CA18. Did you receive radistdoo or x-rey creetmeot cor che (CA2 CANCER)?

```

```

CA19. Where was che flrst redietioo treetmeot giveof (See AR8.)
CA19a. What is (FACILITY) a varesm? (See AR9.)
CA20. What was the date of the flrgt radiatioo treetment that you received?

```

```

CA21. Where was the lemt redietioo treetment giveo? (See ARs.)
CA2la. What 1s (FACILITY)'\# sadresm? (See AR9.)
CA22. What was the date of tbe leat redietson treetment thet you received?
\INTERYIENER: IF STILL RECEIYING RADIATION ENTER =95* FOR MONTE.\
MONTH /'/ DAY /
CA23. Have you received chemotherepy, that is either pills or ioyectioom or both, lor the (CA2 CANCER)?

```

```

CA24. Where was the firat chemothoropy treatmeot given? See CAs for recordiog lostructions.
CA24a. What is (FACILITY)'s address? (See AR9.)
CA25. What was the date of the \&1rat chemotherepy treatment thet you received?
MONIH // DAY _/_ YEAR
CA26. Where was the last chemotherapy treatmeot giveo? (See ARB.)
CA26a. What is (PACILITY)'s address? (See ar9.)
Ca27. What was the date of the last chemotherapy treatment that you received?
MONTB //-

```

CA28. During the past month have you had pain due to your (CA2 CANCER)?


CA29. Jging this card, please rate the pain you have had on average during the past month by giving me a number from 0 to 10 , where 0 is no pain and 10 is severe or excruciating pain, as bad as you can imagine.
[HAND SHOW CARD F TO RESPONDENT.]

\section*{PAIN CATEGORY}

CA30. please tell me how much relief you' got, on average during the past month, from medications or other treatments you were given for pain. Would you say...
```

Complete relief,
Almost complete relief,
Partial relief
Very little relief, or
No relief?
REFOSED. .
DON'T KNOW

```

CA31. Considering all the ways your cancer affects you please give me a number that reflects how well you are doing when 0 very poor and \(10=\) very well. [HAND SHOW CARD L TO RESPONDENT.]

\section*{WELLNESS CATEGORY}
(SKIP: IF CALOC1, CALOC2, CALOC3, CALOC4, OR CALOC5 = 52 (BREAST CANCER) AND CA13 (COND.OPERCOND) = 1, OR IF CA7 (COND.SPRDWHR1, SPRDWHR2, OR SPRDWHR3) = 52 (BREAST CANCER), THEN GO TO CA32. OTHERWISE, GO TO BOX CA1O.)

CA32. Is the movement of your arm limited as a result your breast surgery?

(BOX CA10: IF CALOC1, CALOC2, CALOC3, CALOC4, OR CALOC5 = 54 (COLON CANCER) AND CA13 (COND.OPERCOND) = 1, OR IF CA7 (COND.SPRDWHR1, SPRDWHR2, OR SPRDWHR3) = 54 (COLON CANCER), THEN GO TO CA33. OTHERWISE, GO TO BOX CAII.)

CA33. Do you have difficulties with your bowels as a result of your colon surgery?


CA34a. What difficulties do you have? Do you have constipation?


CA34b. Do you have diarrhea?

(BOX CA11: FOR EACH CANCER SELECTED OR ADDED AT CA2, ASK CA3 - CA34b, THEN GO TO CA35.)
CA35. Are there any other conditions or diseases that you have that \(I\) haven't asked about?


REFUSED
(ACINTRO)
CA36. What are they? ENTER VERBATIM BELOW.]

\section*{SECTION AC: ACTIVITIES}

Next, I would like to talk about some of your other daily activities.
(SKIP: IF S27 = 2, -7 OR - 8 , GO TO AC2. IF S27 = 3 AND S28 \(=91,-7\) OR -8, GO TO AC7. OTHERWISE, GO TO AC1.)
ACl. Earlier you mentioned that, by yourself, you (have difficulty/are unable to) (prepare/preparing) meals
PARTICIPANT MAINTAINS EARLIER RESPONSE
PARTICIPANT CHANGES EARLIER RESPONSE
1
2
(SKIP: IF 1 SET AC1 = 1 AND SET VARIABLE DALY.BASDFLVL = SCRDFLVL. IF 2 SET AC1 = 2 AND SET VARIABLE DALY.BASDFLVL = -1, THEN GO TO AC2. IF ACl = 1 AND DALY.DONTACT \(=1\), THEN GO TO AC4a. IF BASDFLVL \(=4\) GO TO AC4a. OTHERWISE, GO TO AC2.)

AC2. Eava you cut back on tha numbar of masla you prapara bacaua your baaltb makas it difflcult?


AC3. Bave you cbangad the types of food you prapara or givan up preparing certain fooda becaua your bealeb makea it difficult?

 OR AC3 - YES, GO TO AC6.

AC4a. How long ago did you tlrat atart baving difficulty praparing mala

\section*{MONTES
YEARS}
(SKIP: IT AC4a - -7 OR - 8, THEN GO TO AC5. OTHERWISE, GO TO AC6.)
AC5. Dalag thla card, bow long ago did you flrat start baving difficulty praparing aeala? Would you aly
(RAND SHOW CARD PINK TO RESPONDENT.)
AC6. What is tha maln condition that (causas you to bava difflculty/pravente you from) praparing maals?
[TO PRORE: HAND SHOW CARD GREEN TO RESPONDENT.]
AC7. Who bas the maln responsbility lor prapering eeels in your boma?
\begin{tabular}{|c|c|c|}
\hline SELF & 1 & (ACl0) \\
\hline SOMEONE ELSE. & 2 & (AC8) \\
\hline REPOSED. & -7 & (AC10) \\
\hline DON'T KNOW. & -8 & (AC10) \\
\hline
\end{tabular}

AC8. Who belps you? [ENTER ONLY ONE gEZPER.]
AC9. Ig (PERSON) praparing mala bacaua your baalth akaa it difflcult for you, or for sopa other raason?

REFUSED.\(-7\)

AC10. Does (a/any other) frland or ralativa come in to your boee to belp you prapara male or bring you meala on regular basia?


AC11. Who belpe you? [ENTER UP TO THREE HELPERS.]
AC12a. Do you get mala on wheels?


AC12b. Do you regularly go out to at at an Eating Togatbar progran auch as at a Sandoz Cantaz oz cburcb?


AC12c. Do you usually eat maaly alone?


AC12d. Do you eat most of your masis in restaurante?


AC13. Doas the place where you liva provida group meala?


AC14. Do you usually at at thoe group meals?


AC15. Earlier you mentioned that, by yourself, you (have difficulty/are unable to) (do/doing) heavy housework such as washing windows, walls, or floors

\section*{PARTICIPANT MAINTAINS EARLIER RESPONSE \\ PARTICIPANT CHANGES EARLIER RESPONSE. \\ 1
2}
(SKIP: IF 1 SET AC15 = 1 AND SET VARIABLE DALY.BASDFLVL = SCRDFLVL. IF 2 SET AC15 = 2 AND SET VARIABLE DALY. BASDFLVL = - 1 , THEN GO TO AC17. IF AC15 = 1 AND DALY.DONTACT \(=1\), THEN GO TO AC18a. IF BASDFLVL \(=4\) GO TO AC18a. OTHERWISE, GO TO AC17.)

AC17. Do you do heavy housework such as washing windows, walls, or floors by yourself less often than you used tof


AC18. Do you do heavy housework such as washing windows, walls, or floors by yourself differently than you used to?

(SKIP: IF AC15 = 1, GO TO AC18a. IF AC15 = 2 OR -1 AND AC17 AND AC18 = 2, -7 OR -8, GO TO AC21. IF AC15 = 2 OR - 1 AND EITHER AC17 OR AC18 = 1, GO TO AC20.)

AC18a. How long ago did you first start having difficulty doing heavy housework such as washing windows, walls, or floors by yourself?
MONTHS
MONTHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(SKIP: IF AC18a \(=-7\) OR -8, THEN GO TO AC19. OTHERWISE, GO TO AC20.)
AC19. Using this card, how long ago did you first start having difficulty (doing heavy housework such as washing windows, walls, or floors by yourself)? Would you say...
[HAND SHOW CARD PINK TO RESPONDENT.]
AC20. What is the main condition that (causes you to have difficulty/prevents you from) doing heavy housework (such as washing windows walls, or floors)?
[TO PROBE: HAND SHOW CARD GREEN TO RESPONDENT.]
AC21. Do you usually receive help from another person in doing heavy housework such as washing windows, walls, or floors?
\begin{tabular}{|c|c|c|}
\hline YES & 1 & (AC22) \\
\hline NO. & 2 & ( AC 23 ) \\
\hline REFUSED & -7 & (AC23) \\
\hline
\end{tabular}

REFUSED.
(AC23)
(AC23)
AC22. Who helps you? [ENTER UP TO THREE HELPERS.]
(SKIP: IF S23 (MNNT.SCRDFLEW) \(=2,-7\) OR -8 ; OR IF S23 \(=3\) AND S24 (DALY.DONTACT) \(=91\), -7 OT -8 , GO TO AC27. OTHERWISE, GO TO AC23.) AC23. Earlier you mentioned that, by yourself, you (have difficulty/are unable to) (do/doing) light housework such as doing dishes, straightening up, or light cleaning

PARTICIPANT MAINTAINS EARLIER RESPONSE
PARTICIPANT CHANGES EARLIER RESPONSE.
1
(SKIP: IF 1 SET AC2 \(3=1\) AND SET VARIABLE DALY.BASDPLVL = SCRDPLVL AND GO TO AC24a. IF AC23 = 1 AND DALY.DONTACT = \(=1\) GO TO AC24a. IF 2 SET AC23 = 2 AND SET VARIABLE DALY. BASDFLVL \(=-1\), THEN GO TO AC27.)

AC24a. How long ago did you first start having difficulty doing light housework such as doing dishes, straightening up, or light cleaning by yourself?
MONTES ..... 1
(SKIP: IF AC24a \(=-7\) OR -8 , THEN GO TO AC25. OTHERWISE, GO TO AC26.)
AC25. Using this card, how long ago did you first start having difficulty (doing light housework such as doing dishes, straightening up, or light cleaning by yourself)? Would you say...
[HAND SHOW CARD PINK TO RESPONDENT.]
AC26. What is the main condition that (causes you to have difficulty/prevents you from) doing light housework (such as doing dishes, straightening up, or light cleaning)?
[TO PROBE: HAND SHOW CARD GREEN TO RESPONDENT.]
AC27. Do you usually receive belp from another person in doing light housework such as doing dishes, straightening up, or light cleaning?


AC28. Who helps you? [ENTER UP TO THREE HELPERS.]
(SKIP: IF S29 (MNNT.SCRDFSEP) =2, -7 OR -8, GO TO AC31. IF S29 = 3 AND S30 (DALY.DONTACT) = 91, -7 OR -8, GO TO AC35. OTHERWISE, GO TO AC29.)
AC29. Earlier you mentioned that, by yourself, you (have difficulty/are unable to) (shop/shopping) for personal items such as medicines or toilet items.
(SKIP: IF 1 SET AC2 \(9=1\) AND SET VARIABLE DALY. BASDFLVL = SCRDFLVL. IF 2 SET AC29 = 2 AND SET VARIABLE DALY. BASDFLVL = - 1 , THEN GO TO AC31. IF AC29 = 1 AND DALY.DONTACT \(\# 1\), GO TO AC32a. IF BASDFLVL \(=4\) GO TO AC32a. OTHERWISE, GO TO AC31.)
\[
\begin{aligned}
& \text { PARTICIPANT MAINTAINS EARLIER RESPONSE } \\
& \begin{array}{l}
1 \\
2
\end{array}
\end{aligned}
\]

AC31. Do you shop for personel items such as medicioes or tollet items lest ofteo theo you used to?


AC32. Do you shop for persooal items such es medicines or tollet item differeotly thao you used to?

(SKIP: IF AC29 - 2, GO TO AC32A. 1F AC29-2 OR -1 AND AC32 AND AC32 - 2. -7 OR -8, GO TO AC35. IF AC29 - 2 OR - 1 AND EITHER AC32 OR AC32 - 1, GO TO AC34.)

Ac32a. Bow loog ago did you flret start hoviog difficulty shopplog for persooal itema such as medicioes or toilet items by yourself? MONTHS

SKIP: IF AC32a - -7 OR -8, THEN GO TO AC33. OTEERWISE, GO TO AC34.)
AC33. Jsing this card, bow loog ego did you firat stert baviog difeiculty (moppiog for persooal items ach es mediciaes or toilet 1tems by yourself)? Would you say..
[GAND SHON CARD PINK TO RESPONDENT.]
Ac34. What is the maio cooditioo that (couses you to hevedifficulty/preveots you from) shoppiog for persooal dtems such es medicioes or tollet items?
[TO PROBE: HAND SEOW CARD GREEN TO RESPONDENT.J
AC35. Do you usually receive help from nother persoo in shoppiog for persooel trems ach es medicioes or toilet iteme?


AC36. Who belpg you? [ENTER UP TO THREE EELPERS.]
 AC37. Earlier you mentiooed that, by yourself, you (have difficulty/ere unable to) (use/using) the telephooe.

PARTICIPANT MAINTAINS EARLIER RESPOKSE....................... \(\frac{1}{2}\) PARTICIPANT CHANGES EARLIER RESPONSE........................... 2
(SRIP: IF 1 SET AC37 - 1 AND SET VARIABLE DALY. BASDFLVL - SCRDFLVL AND CO TO AC3Be. IF AC37 - 1 AND DALY.DONTAMCT - \(1 . \operatorname{GO}\) TO AC3EA IF 2 SET AC37 - 2 AND SET VARIADLE DALY. BASDTLVL - -1. THEN GO TO AC41.)

AC38a. Hov loog ego did you lirst stert heviog difilculty usiog the telephooe by yourself?
нонтнS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\frac{1}{2}\)
(SKIP: IF AC38a - -7 OR - 8, THEN GO TO AC39. OTHERWISE, GO TO AC40.)
Ac39. Jsiog this card, bow loog ego did you fizst stert heving difficulty (using the telephone by yourself)? Nould you say. . (EAND SHON CARD PINK TO RESPONDETS.

AC40. What is the malo cooditioo thet (c⿴uses you to heve difficulty/prevents you from) using the telephooe?
[TO PROBE: EAND SHOW CARD GREEN TO RESPONDENT.]
AC41. Do you usually recelve belp from eoother persoo 10 usiog the telephooe?


AC42. Who helps you? (ENTER OP TO THREE EELPERS.)
AC43. Because of bealth or physical problem, do you beve eoy difficulty takiog medicatioos by yourielf.
\begin{tabular}{|c|c|c|}
\hline YES & 1 & (AC45) \\
\hline NO. & 2 & ( \(\mathrm{AC4} 8\) ) \\
\hline DON'T DO. & 3 & (AC44) \\
\hline REFUSED. & -7 & (AC48) \\
\hline DON'T RNON. & -8 & (AC48) \\
\hline Is this for bealth reasoos or other reasoos? & & \\
\hline HEALTE & 1 & (AC45a) \\
\hline OTHER REASONS (SPECIFY) & 2 & (AC48) \\
\hline REFOSED. . & -7 & (AC48) \\
\hline DON' \({ }^{\text {I }}\) RNOW. & -8 & (AC48) \\
\hline
\end{tabular}

AC45. How much difficulty do you have takiog medicetions by yourself?
[RAND SHOW CARD BLUE TO RESPONDENT.]
AC45a. Bow long ago did you first start having difficulty takiog your medicatioos by yourself?
montris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\frac{1}{2}\)
(SKIP: IP AC45e = 7 OR -8, THEN GO TO AC46. OTHERWISE, GO TO AC47.)

AC46. Using this card, how long ago did you first start having difficulty (taking your medications by yourself)? Would you say... [HAND SHOW CARD PINK TO RESPONDENT.]

AC47. What is the main condition that (causes you to have difficulty/prevents you from) taking your medications by yourself? [TO PROBE: \(H A N D ~ S H O W ~ C A R D ~ G R E E N ~ T O ~ R E S P O N D E N T] ~]\).

AC48. Do you usually receive help from another person in taking your medications?


AC49. Who helps you? [ENTER UP TO THREE HELPERS.]
AC50. Do you have any difficulty managing your money, for example, paying bills or keeping a bank account, by yourself and without help from another person?

```

DOESN'T DO...

```

```

REFU'TED...
(AC52)

Ac5l. Are you less involved in managing your money than you used to be because your health or physical condition makes it difficult?


```
NO. ....................................................................................
```


(SKIP: IF AC50 = 1 GO TO AC53. IF AC50 AND AC51 = 2, -7 OR - 8 GO TO AC56. IF AC50 $=2,-7$ OR -8 AND AC51 $=1, G O T O$ AC55.)
AC52. Is this for health reasons or for some other reason?
HEALTH. 1 (AC53a)
OTHER REASONS (SPECIFY).. 2 (AC53a)

AC53. How much difficulty do you have? Would you gay
[HAND SHOW CARD BLUE TO RESPONDENT.]
Ac53a. How long ago did you first start having difficulty managing your money?
MONTHS
YEARS.
1
(SKIP: IF AC53a $=-7$ OR -8 , THEN GO TO AC54. OTHERWISE, GO TO AC55.)
AC54. Using this card, how long ago did you firgt start having difficulty managing your money? Would you say
[HAND SHOW CARD PINK TO RESPONDENT.]
AC55. What is the main condition that (makes you less involved/causes you to have difficulty/prevents you from) managing your money? [TO PROBE: HAND SHOW CARD GREEN TO RESPONDENT.]
AC56. Who has the main responsibility for managing your money?

AC57. Does another person usually help you with managing your money?

AC58. Who is this person? [ENTER ONLY ONE EELPER.]
AC59. When you go somewhere by car, who usually drives? Do you drive yourself, does someone with whom you live drive, or does someone outside your home drive?

| SELF | 1 | (AC64) |
| :---: | :---: | :---: |
| SOMEONE IN HOME | 2 | |
| SOMEONE OUTSIDE HOME | 3 | |
| DOES NOT TRAVEL BY CAR | 4 | (AC61) |
| REFUSED. | -7 | (AC61) |
| DON'T KNOW | -8 | (AC61) |

AC60. Who helpg you? [ENTER UP TO THREE HELPERS.]
AC61. Have you ever had a driver's license?

RE
GDINTRO)
(GDINTRO)
(SKIP: IF AC59 $=4$ AND AC61 $=1$, SKIP TO AC63. OTHERWISE, CONTINUE.)

```
AC62. Do you still drive?
```



```
    DON'T KNOW
AC63. Did you stop driving for health or vision reasons or for same other reason?
    HEALTH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (GDINTRO)
```


AC64. Over the last yar, have you cut down on the amount you drive or when you drive (auch ag not driving at bight or in the rain),
because of your health or vision?

SECTION GD: GDS

GDINIRO. Now, I have some more question about your satisfaction with your life. GD-1. Are you basically satisifed with your life?
1
2GD-2. Have you dropped many of your activities and intarests?

NO.

REFOSED.

DON'T KNOW

GD-3. Do you seel that your life is ampty?

GD-4. Do you often get bored?
YES......
NO. . .
REFUSED.2
2
-7
DON'T TROW -7
-8
GD-5. Are you hopeful about the future?
NO. REFOSED

DON' I RNOW 1
2
-7
GD-6. Are you bothered by thoughts you can't get out of your head?
YES.
NO.

REFUSED

REFUSED. DON'T $^{\text {RNOW. }}$ -

GD-7. Are you in good spirita most of the time?

GD-8. Are you alraid that something bad is going to bappen to you?
YES
NO.
REFUSED
DON'I RNOW . $\quad-\quad-8$
GD.9. Do you feel bappy most of the time?

GD-10. Do you often feel helpless?

GD-11. Do you often get restless and fidgety?

GD-12. Do you prefer to stay at home, rather than going out and doing new things?

GD-13. Do you frequently worry about the future?

GD-14. Do you feel you have more problems with memory than most?

GD-15. Do you think it is wonderful to be alive now?

DON'T KINOW.2
-7

GD-16. Do you often feel downearted and blue?
YES.
1
NO. 2
-7

DON'T KNOW.
GD-17. Do you feel pretty worthless the way you are now?

GD-18. Do you worry a lot about the past?

GD-19. Do you find life very exciting?

GD-20. Is it hard for you to get started on new projects?

GD-21. Do you feel full of energy?

GD-22. Do you feel that your situation is hopeless?

GD-23. Do you think that most people are better off than you are?

GD-24. Do you frequently get upset over little things?

GD-25. Do you frequently feel like crying?

GD-26. Do you have trouble concentrating?

GD-27. Do you enjoy getting up in the morning?

GD-28. Do you prefer to avoid social gatheringe?

GD-29. Is it asy for you to make decisions?

GD-30. Ia your mind as clear as it used to be?

GD-31. Please tell me whether you agrae or disagrae witb thip etetement you say you agrea or disagree?

GD-33. Would you ay you diangree etrongly or disagrea somewhat?

GD-34. Do you agree or disagree with this stetement i often feal helplesa in dealing with the probleme of life

GD-35. Would you ay you agree atrongly or agree omewhat?

GD-36. Would you say you disagrae strongly or disagree omewhat?

GD-37. During the past week, have you felt nervous or baky inside?

GD-38. How nervous or shaky have you lelt? would you say a little, quite a bit, or extremely nervous and saky inside?

B-62

GD-39. During the past week have you had to avoid certain things, places or activities because they frighten you?
YES.
REFUSED.
DON'T RNOW
1
2
-7
-7
-8
(GD-41)
(GD-41)
(GD-41)
$(G D-41)$

GD-40. How much have you had to avoid certain things because they frighten you? would you say a little, quite a bit, or extremely
often?

$$
\begin{aligned}
& \text { A LITTLE. . } \\
& \text { QUITE A BIT } \\
& \text { EXTREMELY. } \\
& \text { REFUSED.... } \\
& \begin{array}{l}
1 \\
2
\end{array} \\
& \begin{array}{r}
2 \\
3 \\
-7
\end{array}
\end{aligned}
$$

-41. During the past week have you felt tense or keyed up?

GD-42. How much have you felt tense or keyed up? Would you say a little, quite a bit, or extremely tense or keyed up?
A LITTLE . .
QUITE A BIT
EXTREMEL
REFUSED....
1
2
3
3
-7
-8

GD-43. During the past week have you felt fearful?

GD-44. How much have you felt fearful? Would you say a little, quite a bit, or extremely fearful?

(SKIP: IF DEMO. PTMARSTA $=2$, GO TO GD45. OTHERWISE, GO TO BOX GD2.)
GD-45. Were you widowed within the past 12 months?

(BOX GD2. SKIP: IF DEMO. PTMARSTA $=1$, GO TO GD46. OTHERWISE, GO TO GD47.)
GD-46. Has your husband been seriously ill or had a serious accident within the past 12 months?

GD-47. Have you lost (a/any other) close relative or very close friend through death within the past 12 months?

GD-48. Have you been separated from a child, close friend or relative whom you depend on for help (within the past 12 months)?

GD-49. Did you lose a pet (in the past 12 months)?

GD-50. Have you had to give up a hobby or activity that is important to you in the past 12 months?

GD-51. Did anything (else) happen to you, either good or bad, within the past 12 months, that was very important to you?

SECTION BA: BALANCE/FALLS

BAINTRO. Now I would like to ask you some guestions about your balaoce.
BA-10. Jaiog this cerd, pleese tell me if you heve aoy prohlem with keepiog your haleoce wheo you ere walking oo a level arfece Would you say elways, very often, often, sometimes, or never?
(BAND SHOW CARD 4 TO RESPONDENT.]

PREQUENCY
BA-1h. (Dalog thia card, please tell me if you have aoy problemmith keeplog your heleoce wheo you are. . dressing while ateodiog Would you aay always, very ofteo, ofteo, cometimes, or never?
[GAND SHOW CARD 4 TO RESPONDENT.]

PREQUEMCY
BA-1c. (Usiog thle cerd, pleese tell me if you havo aoy prohlem with keeplog your helaoce when you are. closed, such as ataodiog io the hower. Would you aey elweys, very ofteo, often, sometimes, or oever?
[BAND SHOW CARD M TO RESPONDIRT.]

PREQUENCY

ba-1d. (Osiog this card, please tell me 14 you bave aoy problem with keeplog your baleoce when you ere. . walkiog dow eteirs Would you say always, very often, ofteo, sometimes, or oever?
[HAND SHOW CARD M TO RESPONDENT.]

FREQUENCY
BA-2. Do you ever feel dizzy or light-headed efter ntanding up?

BA-3. Heve you felleo lo the past 12 mootha? Falliog locludes falding oo the ground or et some other level. such as ehalr.

BA-4. How maoy times have you falleo io the leat 12 mootha?
TIMES

BA-5. Did a medicel cooditioo such se stroke, Parkiosoo's disesee or selzure disorder, cootribute to your (most receot) fall?

BA-6. What was the medicel cooditioo?

BA-7. Did medicetioo or medication alde effects cootribute to your (most receot) fall?

BA-8. What was the medication?
bA-9. Did aoything in your bouse or outdoors cootribute to your (most receat) fall, auch ea erg. atairs, a curb, or ice?
YES.
$\begin{array}{cc}1 & (B A-11) \\ 2 & (B A-11) \\ -7 & (B A-11)\end{array}$
REFOSED
($8 \lambda-11$)
$(8 \lambda-11)$

BA-10. What else contributed?
[ENTER VERBATIM TEXT BELOW.]

BA-11. Have you ever lost consciousness or passed out at the time of any fall?

BA-17a. When you think you might fall, do you have lightheadedness or faintness?

BA-17b. (When you think you might fall, do you. . .) bave spinning sensation or dizziness?
\square
NO.
BA-17c. (When you think you might fall, do you. . .) have weakness?

BA-17d. (When you think you might fall, do you. . .) have halance prohlems, that is are you unsteady on your feet?

BA-17e. (When you think you might fall, do you. . .) have the feeling that your legs are giving out on you?
YES. \quad $\quad \frac{1}{2}$
BA-l7f. When you think you might fall, do you think it is due to problems seeing well?
YES .
NO. 12
BA-18. Do you ever limit your activities, for example, what you do or where you go, hecause you are afraid of falling?

BA-19. Do you limit your activities hecause of a fear of falling..

SECTION SE: SEEING AND HEARING

SE-1. Do you have glasses or contact lenses?

SE-2. Do you wear them

SE-9. Do you use a hearing aid?

SE-10. Can you hear well enough (, with a hearing aid if necessary,) to use the telephone?

SE-11. Can you hear well enough (,with'a hearing aid if necessary, to carry on a conversation in a crowded room?

SE-12. Do you have trouble hearing another person if there is a radio or tV playing in the same room?

SE-13. Do you have difficulty hearing when someone speaks in a whisper?

(SKIP: IF SE-9 = 2, AND SE-10=1, AND SE-11=1, AND SE-12 $=2$, AND SE-13 $=2$, THEN GO TO SE-19. OTHERWISE, GO TO SE-14.) SE-14. Do people tend to leave you out of conversations because you don't hear well?

SE-15. Does a hearing problem cause you to feel frustrated when talking to members of your family?

SE-16. Does a hearing problem cause you to attend church, movies, concerts or other events less often than you would like?

SE-17. Does a hearing problem cause you to have arguments with family members?

SE-18. Does a hearing problem cause you difficulty when listening to television or the radio?

SE-19. Do you feel that any difficulty with your hearing limits or hamers your personal or social life?

SECTION DM: DEMOGRAPHICS

```
DMINTROA. Now I have some questions about the place where you live.
DM-1. Is it necessary to go up or down a step to get into this (house/apartment) from the outside?
```



```
DM-2. Is it more than one step?
```


DM-3. Does this (house/epartmeot) heve hethroom, hedroom, and xitcheo all oo the ame 1 loor or levelf

DM-4. Beceuse of a health or physicel problem, do you oeed bethroom, hedroom, aod kitcheo ell oo the same floor or levelf

DM-5. Does this (house/epertment) have welk-in shover, thet is, where you don't step over the side of the tub to get loto the shower?

DM-6. Because of a beelth or phyicel problem, do you oeed walk-10 bhover?

DM-7. How may rooms do you heve io your (house/eperceeot)?
rooms
DM-8. Are there soy rooms thet you heve stopped using because of your heelth or physicel cooditioo?


```
NO (DM-9)
```

DM-8a
How macy?

ROOMS
DM-9. How maoy living childreo do you hove includiog edopted childreo of chlldreo you beve reiged?
[ENTER -0. IF RESPONDENT SAYS NONE.]
CHILDREN
(SKIP: IF VARIABLE DEMO.PTMARSTA - 1 AND/OR ENOM.HBPREL - O2, THEN ASK DMIO AND DMIOE. OTRERWISE, GO TO DMINTROB.)
DM-10. Would you say that, io geoeral, your bushaod'g bealth is

DK-10a. In the past six mooths, bas your bushond bealth

steyed the same. or.
Gotten worse?
REPUSED.
DON'T RNOW.

DMINTROB. I am goiog to osk fev questioos about sources of income heceuse it is important to know bov vell public sad privete programs lor older people provide the resources people oeed se they are iging

DM-11. Do you for your busheod) receive moothly Socisi Security or Reilroed retirement peymente? (READ IF mECESSARY: Sociel Security checks ere either eutomaticelly deposited in the hank or mailed to erive oo the 3 rd of every mooth. If mailed, they ere seot io e gold colored eovelope.)

DK-12. Do you (or your bushand) receive retirameot peyments from former employment, for example privete pensions from employers or unioos, or Federal or State government retirement plaos?

DM-13. Do you (or your bushaod) have locome from a curreot joh or business?

DM-14. Do You (or your hushand) receive income from Supplemental Security Income or SSI? (READ IF NECESSARY: Federal SSI checks are either automatically deposited in the bank or mailed to arrive on the lst of every month. If mailed, they are sent in a blue colored envelope.)

DM-15. Do you (or your husband) receive food stamps?

DM-16. Do you (or your husband) receive income from stocks or mutual funds or income from rental property, royalties, estates or trusts?

DM-17. Do you (or your hushand) recelve any regular cash income from your children?

DM-18a. How often does it happen that you (and your hushand) do not have enough money to afford the kind of food you (and your husband) should have? Would you say never, once in a while, fairly often or very often?

DM-18h. How often does it happen that you (and your husband) do not have enough money to afford the kind of medical care you (and your hushand) should have? Would you say never, once in a while, fairly of ten or very often?

| NEVER . | 1 |
| :---: | :---: |
| ONCE IN A WHI | 2 |
| FAIRLY OFTEN. | 3 |
| VERY OFTEN. | 4 |
| REFUSED. | -7 |
| DON' ${ }^{\text {T }}$ KNOW. | -8 |

DM-18c. How often does it happen that you (and your hushand) do not have enough money to afford meeting monthly payments on your hills? Would you say never, once in a while, fairly often or very often?

DM-19. In general, how do your finances usually work out at the end of the month? Do you find that you usually end up with some money left over, just enough to make ends meet, or not enough money to make ends meet?


```
OT ENOUGE TO MAKE ENDS MEET.
DON'T KNOW
```

(DMINTROC)
(DMINTROC)
(DMINTROC)

DM-21. When was the last time you worked for pay?
$\overline{\text { MONTH }} / \frac{}{\text { YEAR }}$
DMINTROC. Next, I have a few questions about your health insurance.
DMINTROD. Medicare is the Social Security health insurance program for people 65 years old or over. People covered by Medicare have a card that looks like this. Many people also have other coverage for health care.
[HAND SHOW CARD N TO RESPONDENT.]
DM-22. Are you covered by Maryland's Medical Assistance (MEDICAID) program? People with Medical Assistance usually have a card that looks like this.
[HAND SHOW CARD O TO RESPONDENT.]

DM-23. Are you covered by any other public assistance program that pays for medical care?

DM-24. What is the name of that program?

DM-25. Not counting Medicare, Medical Assistance or the programs I just anked about, do you bave any other health inaurance or medical inaurance that pays bospital or doctor bills?

DM-26. Is that...
Maryland Blue Cross/Blue Shield. or
Something elae (SPECIPY)?
REFUSED.
DON'T KNOW
(DM-27)
(DM-27) prescription medicines?

```
```

YES.

```
```

YES.
REFOSED.
REFOSED.
DON'T RNOW
DON'T RNOW
4

```
```

4

```
```

$(D M-25)$
$(D M-25)$
(DM-25)

YES
REFOSED.

SECTION CO: CONTACT AND PROXY INFORMATION

COl. Next, I would like to verify your address. I have it listed as... [READ ADDRESS LISTED BELON.] Is this correct?

C02. What is your correct address?
[PRESS ENTER FOR FIELDS WITH NO CORRECTIONS.]
CO2A. What is your telephone number?
[ENTER 999" IN AREA CODE IF PERSON DOES NOT HAVE A PHONE.]
C03. We will be contacting you in about 6 months to see how you are doing. In order to help us do that I would like the name of someone who could answer questions about your health if you were not available to do so. please give me the name of someone in this area who would know the most about your health and health care.

```
PROXY NAME GIVEN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
PROXY NAME NOT GIVEN.
REFUSED....
\begin{tabular}{rr}
1 & (CO4) \\
2 & (CO6) \\
-7 & (CO6)
\end{tabular}
```

CO4. Who is this person?
[ENTER ONLY ONE PERSON.]
BOX COI: IF PERSON SELECTED OR ADDED AT CO4 IS A HOUSEHOLD MEMBER (PERS.PERSLIVE $=1$), THEN COPY THE PARTICIPANT'S ADDRESS TO THE PROXY'S ADDRESS FIELDS, THEN GO TO CO6. OTHERWISE, GO TO CO5.

C05. What is (CO4 PERSON NAME)'s address and phone number?
[ENTER "999" IN AREA CODE IF PERSON DOES NOT HAVE A PEONE.]
C06. I would also like the name, address, and telephone number of two relatives or close friends who would know where to reach you in case we have trouble getting in touch with you. Please give me the name of someone who is not living with you.

C07. (Please give me the name of a relative or close friend, not living with you, who would know where you would be.) [ENTER ONLY ONE CONTACT.]

C08. Please give me an address and phone number for contacting (CO7 PERSON NAME).
[ENTER "999" IN AREA CODE IF PERSON DOES NOT HAVE A PEONE.]
C09. Please give me another name, address, and telephone number of a relative or close friend who would know where to reach you in case we have trouble getting in touch with you. Again, please give me the name of someone who is not living with you.

COlo. (Please give me the name of a relative or close friend, not living with you, who would know where you would be.)
[ENTER ONLY ONE CONTACT.]
C011. Please give me an address and phone number for contacting (CO10 PERSON NAME).
[ENTER "999* IN AREA CODE IF PERSON DOES NOT HAVE A PHONE.]
C012. That's all the questions that I have. Before I leave I would like to make an appointment with you for the nurse who will be conducting the physical examination in your home. I would like to remind you that the examination is absolutely free, and that you will receive $\$ 15$ for participating. What times would be convenient for you? [RECORD ON RECORD OF CALLS. CALL $532-2250$. OBTAIN APPOINTMENT TIME. COMPLETE APPOINTMENT PORM.]

Thank you very much for your time. Here is your $\$ 15$ for completing this interview. please sign this form indicating that you have received the $\$ 15$.

C012a. Let's stop here for today. But, before I leave, I want to make an appointment with you to complete this interview. Would (DATE and TIME) be convenient for you?
Thank you. I'll see you next (DATE and TIME scheduled),
BOX CO4: IF MINI-MENTAL TOTAL SCORE IS 24 OR MORE AND BASE.PTAGE $=70-79$, THEN GO TO COI2b. OTHERWISE, GO TO COI3.
Col2b. You have been selected to participate in our study. You represent thousands of women and the information which you give us will help the National Institutes of Health and Johns Hopkins University learn about the health conditions and needs of women like yourself. Therefore, your participation is very important.

Before we proceed further, I would like you to sign this consent form which will confirm that you have agreed to go to the Johns Gopkins Functional Status Laboratory for an interview and physical examination and that you give us permission to examine your medical records. please take a moment to read the form.
[READ WHAS II CONSENT FORM ALOUD.]
CO12c. Before I leave I would like to make an appointment for you to go to the Johns Hopkins Functional Status Laboratory for an interview and a free evaluation of some aspects of your health as well as your ability to perform daily activities. We will help make this visit as convenient as possible by providing transportation and lunch for you.
[COMPLETE WHAS II RECROITMENT FORM.]

C013. Those are all the questions that I have today. Based on your answers to these guestions, we now have all of the date that w need. Thank you for your participation in this important study. Please remember that everything you have told me today will be kept in confidence.

BOX CO6: IF MRND. MRNDRSLT = 51 AND HEEA. GENEELTE = 1, 2, OR 3, AND HRND. SCRMYOCR, SCRANGNA, SCRCRF, SCRHBP, SCRERTDS, SCRDIABS, SCRARTES, SCRSTROX, SCRCANCR, SCRFXHIP, SCRPRINS, AND DTLNGDS - 2, -7, OR - B, AND BASE.PTRACE I 2 , AND DEMO.PTEIGRAD - 10 - 18, THEN GO TO COI4. OTHERNISE, GO TO BOX COT.

CO14. IINTERVIEWER: IF THE PARTICIPANT EAS NO SEVERE HEARING OR VISOAL IMPAIRGENT, SHE MAY BE ELIGIBLE FOR PARTICIPATION IN THE BALTIMORE LONGITUDINAL STUDY ON AGING. IF SHE EAS NO SEVERE HEARING OR VISUAL IMPAIRUENT, READ TEE FOLLOWING. OTHERWISE, PRESS ENTER TO CONTINUE. 1

While you are not eligible for our Etudy, you may be eligible for the Beltimore Longitudinel Study on Aging. If you ere interested in finding out more about that study, I can give you some information.
[INTERVIEWER: IF SHE IS INTERESTED, GIVE EER TEE INFORMATION, AND INDICATE TEAT YOD DID SO ON TEE CALL RECORD.]
BOX CO7. CASES CODED INELIGIBLE. GO TO FINSCRM

SECTION IC: INTERVIEWER COMMENTS

IC1. TYPE OF LIVING QUARTERS:
DETACHED SINGLE-FAMILY HOOS
DETACHED THO-POUR PAMILY HOUSE OR APARTMENT.....................................
SEMI-DETACRED ROW BOUSE, TOWN HOUSE $/ 2$ OR MORE
ONITS IN A ROW) ... MORE UNITS)
APARIMENL GOUSE (S ORM CONTS
APARTHEAT IN A PARTIALLX COMRERCIA
RETIREMENT COVOUNITY OR APARTMENTS
OTEER (SPECIPY)
DON'I RNOW 2

WAS THE INTERVIEW COMPLETED?
YES, WITH LITTLE OR NO MISSING INFORMATION............... 1
YES, BUT A CONSIDERABLE NSOUNT OF INPORUATION (IC3)

WAS NOT OBTAINED.
(IC2e)
NO, TERMINATED
DON' T KNOM.
(IC3)
IC2a. INTERVIENER: EXPLAIN REASONS FOR REPOSALS OR NON-RESPONSE BELOW.

IC3. WAS ANYONE ELSE PRESENT DURING TEE INTERVIEW?

(IC4)
IC3a. [INTERVIEFER: ENTER TEE NANE OF TEE PERSON WGO WAS PRESRET DORING TBIS INTERVIEN.) [ENTER ONLY ONE PERSON.〕

IC3b.

ICJC. HOM WERE QUESTIONS ANSWERED: [OSE CODES BELOW.]

| aa. | SCREENER . | 1) |
| :---: | :---: | :---: |
| a. | HEALTE EABITS. | $1)$ |
| b. | ARTHRITIS. | , |
| c. | HEART DISEASE AND DIABETES... | $($) |
| d. | Daily activities....... |) |
| - | EXERCISE TOLERANCE. | , |
| E. | LIFE SATISFACTION. | , |
| g. | PULMONARY....... |) |
| b. | NEUROLOGIC. |) |
| 1. | CANCER. | () |
| J. | ACTIVITIES | , |
| x. | GDS... | (1) |
| 1. | Balance/palls . | 1) |
| m. | SEEING AND HEARING. | 1) |
| \square. | DEMOGRAPHICS..... | 1) |
| 0 . | CONTACT AND PROXY INPORMATION. | (1) |
| | RESPONDENT ONLY. . | 1 |
| | RESPONDENT AND OTHER PERSON. | 2 |
| | OTHER PERSON ONLY...... | 3 |

IC4. OBSERVED PGYSICAL DIFFICULTIES: [CODE ALL THAT APPLY.]

| 0 | NO PAYSICAL DIFFICULTIES OBSERVED. | $($ |
| :---: | :---: | :---: |
| 1 | HEARING IMPAIRMENT. | () |
| 2 | VISUAL IMPAIRMENT | (|
| 3 | WHEELCHAIR. | () |
| 4 | USE CANE, CRUTCEES, WALRER |) |
| 5 | WALKING DIFFICULTIES. |) |
| 6 | CRIPPLED HANDS OR LEGS. |) |
| 7 | COUGES CONTINOALLY. |) |
| 8 | SHORTNESS OF BREATH. |) |
| 9 | SKIN PROBLEMS. |) |
| 10 | SPEECH PROBLEMS - NOT LANGUAGE. | () |
| 91 | OTHER PHYSICAL PROBLEMS, (SPECIFY) | () |

IC5. LANGUAGE
NO PROBLEM DURING INTERVIEN
SOME DIFFICULTY
2
3
-8
GREAT DIFFICULTY DURING INTERVIEW.......................
(END)

DON'T KNOW.

| ENGLISH. |
| :---: |
| | |
| | |

CARD GREEN

| ARTHRTIS OR JOINT PAIN OF HANDS, ARMS OR SHOULDERS | I |
| :---: | :---: |
| ARTHRITIS OR JOINT PAIN OF HIPS, KNEES OR FEET | 2 |
| BACK PAIN | 3 |
| BALANCE PROBLEMISUNSTEADINESS ON FEET | 4 |
| CANCER | 5 |
| DIABETES | 6 |
| EMOTIONAL OR PSYCHOLOGICAL PROBLEMS | 7 |
| HEARING PROBLEMS | 8 |
| HEART DISEASE (CHEST PAIN, CONGESTIVE HEART FAILURE, ETC) | 9 |
| HIGH BLOOD PRESSURE. | 10 |
| HIP FRACTURE | 11 |
| INJURY | 12 |
| LUNG DISEASE (EMPHYSEMA, ASTHIMA, CHRONIC BRONCI3TTIS, ETC) | 13 |
| MEAIORY PROBLEMS OR CONFUSION | 14 |
| PARKINSON'S DISEASE | 15 |
| POOR CIRCULATION IN LEGS | 16 |
| STROKE. | 17 |
| VISION PROBLEMS | 18 |
| WEAKNESSNO SPECIFIC DISEASE | 19 |
| OLD AGE (PROBE) | 20 |
| SOME OTHER PROBLEM OR CONDITION (SPECIFY) | 91 |

CARD PINK

| Less than 3 months ago, | 1 |
| :--- | :---: |
| 3 to 6 months ago, | 2 |
| 6 months to I year ago. | 3 |
| I to 3 years ago, | 4 |
| 3 to 5 years ago. | 5 |
| 5 10 I0 years ago, | 6 |
| 10 to IS yeurs ago, | 7 |
| IS to 20 years ago, or | 8 |
| More than 20 years ago? | 9 |
| REFUSED. | -7 |
| DONT KNOW | -8 |

CARD BLUE

| A litle dificulty.... | 1 |
| :--- | :---: |
| Some difficulty... | 2 |
| A lot of difliculy, or | 3 |
| Are you unable to do il? | 4 |
| REFUSED | -7 |
| DONT KNOW | -8 |

CARD A

CLOSE YOUREYES

CARD B

CARD C

| A. | Less then \$3,000.......................... | 1 |
| :---: | :---: | :---: |
| B. | \$3,000-5,999.. | 2 |
| C. | \$6,000-7,999........................... | 3 |
| D. | \$8,000-9,999........................... | 4 |
| E. | \$10,000-14,999......................... | 5 |
| F. | \$15,000-24,999......................... | 6 |
| G. | \$25,000-34,999.. | 7 |
| H. | \$35,000-49,999......................... | 8 |
| 1. | \$50,000 or more........................... | 9 |

CARD D
OVER-THE-COUNTER MEDICATIONS

| Aspirin | Cold medicine |
| :--- | :--- |
| Tylenol | Cough medicine |
| Bufferin | Sleep medicine |
| Anacin | Antacids |
| Headache pills | Stomach medicine |
| Pain killers | Vitamins |
| Laxatives | Ointments or salves |
| Bowel medicine | Eye Drops |
| | Any other medicine from the drug store |

CARD E

CARD F

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | |
| NONE | | | | | | | | | SEVERE/EXCRUCIATING AS BAD AS YOU CAN IMAGINE | |

CARD G

CARD H

| MORE THAN ONCE A DAY | 1 |
| :--- | :---: |
| ONCE A DAY | 2 |
| 4-6 TIMES A WEEK | 3 |
| 2 OR 3 TIMES A WEEK. | 4 |
| ABOUT ONCE A WEEK | 5 |
| LESS THAN ONCE A WEEK. | 6 |
| REFUSED.......... | -7 |
| DONT KNOW... | -8 |

CARD I

CARD I_{1}

| VERY DISSATTSFIED | - | 0 |
| :--- | :--- | :--- |
| SOMEWHLAT DISSATISFIED | $=$ | 1 OR 2 |
| A LITLE DISSATISFIED | $=$ | 3 OR 4 |
| NEITHER SATISFIEDOR | - | 5 |
| DISSATISFIED | - | 6 OR 7 |
| A LITTLE SATISFIED | $=$ | $80 R 0$ |
| SOMEWHAT SATISFIED | $=$ | 10 |
| VERYSATISFIED | | |

CARD J

| 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

CARD J_{1}

| VERY UNHAPPY | $=$ | 0 |
| :--- | :--- | :--- |
| SOMEWHAT UNHAPPY | $=$ | 1 OR 2 |
| A LITTLE UNHAPPY | $=$ | 3 OR 4 |
| NEITHER HAPPY OR UNHAPPY | $=$ | 5 |
| A LITLE HAPPY | $=$ | 6 OR 7 |
| SOMEWHAT HAPPY | $=$ | 8 OR 9 |
| VERY HAPPY | $=$ | 10 |

CARD K

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | |
| NO | | | | | | | | | | THE MOST |
| ENERGY | | | | | | | | | | ENERGY EVER |

CARD L

CARD M

ALWAYS VERY OFTEN
 OFTEN
 SOMETIMES
 NEVER

CARD N

SAMPLE MEDICARE CARD

CARD 0

SAMPLE MEDICAID CARD

Appendix C

Interviewer's Physical Assessment
\qquad

WOMEN'S HEALTH AND AGING STUDY

PHYSICAL ASSESSMENT FORM

DATE: \qquad
TIME BEGAN: |__|__|:|__| AM........... 1

TIME ENDED: \qquad |: |_|__| AM. 1
PM......... 2
INTERVIEWER: \qquad

INTRODUCTION:
Next, I am going to ask you to do some tasks, some of which might be very easy and others difficult for you to do. If you feel that you cannot do any task, just say so and we will go on to the next one.

Equipment: Goodlite Portable Eye Chart.
Description: The participant is asked to read the letters on the chart, starting at the top. Correct and incorrect letters are marked on a standardized score sheet.

Instructions: 1. Make sure the participant is wearing glasses if she uses them to view things at a distance. If the participant wears bifocals or trifocals, instruct her to look through the portion used for viewing distant objects. Be sure she is not wearing outside glasses, such as sunglasses.
2. Place the eye chart on a table or other level surface within easy reach of an $A C$ receptacle.
3. Seat the participant 10 feet from the chart.
4. Turn the chart illuminator on and turn off the room lights. Light from other sources such as windows should be minimized.
5. Tell the participant to read the letters on the chart with both eyes open, starting at the top.
6. If any errors are made on the top row, move the participant to 5 feet from the chart and begin again. If any errors are made on the top row at 5 feet, move the participant to $21 / 2$ feet from the chart and begin again. Continue at $21 / 2$ feet even if the participant makes an error on the first row.
7. The participant should continue to read the letters until the maximum allowable number of missed letters is met for a line.
8. You may focus the participant on the correct line by pointing to the line she is to read. You may not point to individual letters to help her focus.
9. If the participant is unable to see a letter, ask her to give her best guess.
10. Circle correct letters and place a line through incorrect letters on the score sheet. Then calculate the total score by adding up all correct answers. Refer to scoring key to see if an alert is indicated.

Scoring Key:

ALERT SCORES

Subtotal less than 50 at 10 ft .
Subtotal less than 80 at 5 ft .
Any subtotal at 2.5 ft .

If an "Alert Score" is calculated, go to the back cover for instructions on how to proceed with this alert.

| ROW NO. | NUMBER CORRECT IN ROW | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | 2.5 | 5 | 7.5 | 10 | | | | | | |
| 2 | 2 | 4 | 6 | 8 | 10 | | | | | |
| 3 | 1.4 | 2.9 | 4.3 | 5.7 | 7.1 | 8.6 | 10 | | | |
| 4 | 1.3 | 2.5 | 3.8 | 5 | 6.3 | 7.5 | 8.8 | 10 | | |
| 5 | 1.3 | 2.5 | 3.8 | 5 | 6.3 | 7.5 | 8.8 | 10 | | |
| 6 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

1. Do you wear glasses to see distant objects? IF YES: Please put them on. (IF BIFOCALS: Please look through the part of your glasses that you use to see distant objects.)
2. Please read the letters on this chart, starting with the top row. (MOVE TO 5 FEET IF ERROR ON TOP ROW)
3. IF PARTICIPANT SAYS SHE CANNOT SEE A LETTER, SAY: Just give me your best guess.

SCORING

1. PARTICIPANT WEARS:

GLASSES .. 1
BIFOCALS OR TRIFOCALS ... 2
CONTACT LENSES .. 3
NO VISUAL AIDS ... 4
2. HOW FAR WAS PARTICIPANT FROM EYE CHART?

```
10 FEET .................................................................................. }
5 FEET ..................................................................................... }
21⁄2 FEET .................................................................................. }
```

3. CIRCLE CORRECT LETTERS AND PLACE A LINE THROUGH INCORRECT LETTERS. WHEN THE ALLOWABLE NUMBER OF MISSED LETTERS IS MET FOR A LINE, STOP THE TEST.

TOTAL SCORE =
\qquad
4. TEST NOT DONE 1
\qquad

Equipment: Lock mounted in a wooden block and key. Stop watch

Description: The interviewer will record whether the participant can pick up and hold the key in order to open the lock. The interviewer will then time how long it takes the participant to open the lock. The participant has a total of 1 minute to complete the task.

Instructions: 1. Make sure participant is wearing glasses if she uses them for reading.
2. Demonstrate procedures.
3. Place board on rubber mat. Place the key in front of the board on the mat on the same side as the hand which she says she uses.
4. You should hold the board firmly. If she likes, the participant can also use her other hand to hold the board.
5. The starting position should be with the preferred hand by her side, not on the table or on her lap. The deadbolt should be on the participant's right.
6. Begin timing as the participant's hand begins to move toward the key.
7. Give the participant 30 seconds to pick up the key. If she has not picked up the key, terminate the task and thank her for trying.
8. If the participant drops the key after picking it up or cannot maneuver the key to a position where she can open the lock without using the other hand, terminate the task and thank her for trying. Do not repeat the test.
9. If the participant cannot open the lock within one minute, terminate the task and thank the subject.
10. End timing when deadbolt appears or at the end of one minute, whichever comes first.

SCRIPT

1. Now I will ask you to pick up a key and open a lock.
2. Do you normally wear glasses for reading? IF PARTICIPANT DOES, HAVE HER PUT THEM ON.
3. Please show me the hand you would normally use to pick up a key and open a lock. You may use your other hand to steady the block, but not to hold the key or help you turn the lock. Let me demonstrate the procedure.
4. Although I will be timing you I would like you to move carefully and smoothly, trying not to drop the key.
5. Do you have any questions? When I say "ready, begin" you may begin.
6. Ready, begin.

SCORING

1. IS RESPONDENT ABLE TO PICK UP KEY (WITHIN 30 SECONDS)?
\qquad
NO .. 2 (TASK 3)
NOT ATTEMPTED (EXPLAIN) ... 9 (TASK 3)
2. IS RESPONDENT ABLE TO PUT KEY IN LOCK?
```
YES .......................................................................................... }
NO ......................................................................................... }2\mathrm{ (TASK 3)
NOT ATTEMPTED (EXPLAIN) ................................................... }9\mathrm{ (TASK 3)
```

3. IS RESPONDENT ABLE TO OPEN THE LOCK?
YES .. 9 (TASK 3)
(TASK 3)
4. TIME TO COMPLETE TASK: \qquad .__ SECONDS

Equipment: Three women's blouses, sizes medium (12), large (18) and extra-large (22). Stop watch

Description: The participant will be given a blouse and asked to put it on and button it.
Instructions: 1. Determine the correct size of blouse. If the participant is too large to wear the largest blouse, do not attempt this task. Score a "9" and explain.
2. Ask the participant to stand up and remove any bulky sweater or jacket. If the participant cannot stand, have her put the blouse on while sitting. Ask her to move to the edge of the chair if possible.
3. Ask her to put on the blouse over her clothes and button it except for the top collar button.
4. Hand the unbuttoned blouse to the participant and begin timing when she takes the blouse.
5. Stop timing when the blouse is buttoned or after four minutes, whichever comes first.
6. If the blouse is buttoned unevenly, ask the participant to take the blouse off and begin again. If the blouse is still buttoned incorrectly after the second attempt, terminate the task.
7. The participant may not stand in front of a mirror to put the blouse on.

TASK 3: PUTTING BLOUSE ON

SCRIPT

1. Next, I would like you to stand up and put a blouse on and button it. You may put it on over your clothes (but please remove your sweater/jacket).
2. (I have a small, medium, and large blouse. Which one should we use?)
3. When I hand you this blouse, please put it on as you normally would when you are dressing, and button all buttons except the top (collar) one.
4. Please tell me when you are done.
5. IF BUTTONED INCORRECTLY: Please take the blouse off and begin again.

SCORING

1. IS RESPONDENT ABLE TO PUT ON BLOUSE? THE BLOUSE IS CONSIDERED ON IF BOTH ARMS ARE IN THE APPROPRIATE SLEEVES AND THE COLLAR IS UP AROUND THE RESPONDENT'S NECK (NOT ACROSS HER BACK).
```
YES ......................................................................................... 1
NO
2 (4)
NOT ATTEMPTED (EXPLAIN) ................................................... }9\mathrm{ (TASK 4)
```

2. IS RESPONDENT ABLE TO BUTTON SHIRT?
```
YES, ON THE FIRST ATTEMPT1
```

YES, ON SECOND ATTEMPT 2

```SHIRT BUTTONED, BUT INCORRECTLY(I.E.: A BUTTON IS UNBUTTONED ORBUTTONED UNEVENLY3
```

NO 4 (4)
NOT ATTEMPTED (EXPLAIN) 9 (4)
3. TIME TO COMPLETE TASK (STOP AFTER FOUR MINUTES):
\qquad MINUTES \qquad
\qquad SECONDS
4. WAS THE PARTICIPANT...STANDING OR1
SITTING 2

Equipment: Stadiometer

Description: The participant's height will be measured standing against a doorway.
Instructions: 1. The floor should be hard, even, flat, and uncarpeted.
2. Respondent should remove shoes, but keep socks on. She should also remove any heavy jewelry or clothing.
3. Place the tape at the estimated height.
4. Ask the participant to stand against the doorway wall with her feet flat on the floor, her feet together, and with her heels, hips, and shoulders directly against the door/wall. Position her head using a Frankfort plane.
5. Stand to the left of the participant and, with your right hand, place the stadiometer against the wall and on the participant's head.
6. Ask the participant to move away from the wall.
7. Place a mark on the tape at the level of the stadiometer.
8. Hold the stadiometer against the wall and pull the tape down to the floor with the plastic piece touching the wall.
9. Read tape from bottom of blue line.

TASK 4: HEIGHT

SCRIPT

1. Now, I would like to get your height.
2. Please slip off your shoes (and remove your jacket, etc).
3. Now, stand back against this doorway with your feet flat on the floor, and with your heels, hips, and shoulders directly against the wall.
4. Please look straight ahead.
5. Now, please step aside so that I can measure your height.

SCORING

1. _ _ _ _ CENTIMETERS
2. TASK WAS:
COMPLETED 1
ATTEMPTED BUT NOT COMPLETED (EXPLAIN) 2
NOT ATTEMPTED (EXPLAIN) 9

Equipment: Scale
Description: The Respondent's weight is measured in kilograms using a bathroom-type digital scale.
Instructions: 1. Check to make sure the switch on the bottom of the scale is turned to "kg." Place the scale on a level, flat floor surface preferable without a rug. Avoid shag or plush carpeting. Set the scale so that the participant will stand facing and within an arm's length of a wall. Participants will automatically use the wall to balance themselves as they get on and off the scale.
2. The participant should be in stocking feet or barefoot, and wearing light indoor clothing with pockets emptied (no coats, sweaters, shoes, heavy jewelry, keys, etc.)
3. Push the red ON button on the front of the scale and wait for the "0.0" to appear. DO NOT put any weight (yours or the participant's) on the scale until the " $0.0^{\text {" }}$ appears.
4. Stand beside the participant while she mounts the scale and assist as needed. If the " 0.0 " goes out before she is on the scale, try again. Ask the participant to step off the scale and mount the scale again when the " 0.0 "s are displayec.
5. Read the scale after about 5 seconds. If it moves between 2 numbers, take the lower weight.
6. Assist the participant in getting off the scale.

TASK 5: WEIGHT

SCRIPT

1. Now, lets get your weight.
2. Please step on the scale when the two zeros appear.

SCORING

1. __ _ .__ KILOGRAMS
2. TASK WAS:

Equipment: 152 centimeter paper tape
post-its masking tape

Description: The participant stands next to a wall. She raises her right arm in front of her and the interviewer marks the position of her right knuckle. She then reaches as far forward as she can without taking a step or falling. Three attempts are measured.

Instructions: 1. For frail individuals who are unable to stand unsupported by another person for 30 seconds, or who use an assistive device, do not perform this test.
2. Tape a disposable tape measure to the wall at the acromion height. Make sure the tape measure is level.
3. Demonstrate the maneuver and ask the participant if she feels that it would be safe for her to attempt it.
4. Have the participant stand with the right acromion next to the tape. Ask her to place her feet in a normal, relaxed stance, with hands held at her sides. Ask her to maintain that position for the rest of the task.
5. Ask the participant to make a fist of the right hand and extend the right arm forward horizontally (approximately 90 degrees). Mark with a post-it the distal end of the right third metacarpal.
6. Ask the participant to reach as far forward as she can without losing her balance or taking a step.
7. The upper body should not be allowed to contact the wall during this maneuver.
8. No attempt need be made to control the participant's method of reaching. However, guard the participant, in case of loss of balance, to prevent her from falling.
9. Record the placement of the right third metacarpal on the tape measure.
10. Repeat steps 5 \& 6 two more times, for a total of three measurements.
11. If the participant touches the wall or takes a step during testing, the trial should be repeated.

SCRIPT

1. Now, let's move on to a more active part of the exam. I would now like you to try to move your body in different movements. I will first describe and show each movement to you. Then l'd like you to try to do it. If you cannot do a particular movement, or if you feel it would be unsafe to try to do it, tell me and we'll move on to the next one. Let me emphasize that I do not want you to try to do any exercise you feel might be unsafe.
2. Stand here with your right shoulder next to the wall.
3. Now, let me attach this paper tape to your wall.
4. Now I would like to demonstrate the maneuver that I am going to ask you to do. DEMONSTRATE. Do you feel that it would be safe for you to lean forward like that as far as you can without losing your balance? IF NO, SCORE BELOW AND GO TO NEXT TASK.
5. Please stand here again. You should place your feet in a normal, relaxed stance, with hands held at your side. Please maintain this position for the rest of this task.
6. Now, make a fist with your right hand and extend your arm forward along the tape.
7. When I ask you to, please reach as far forward as you can without losing your balance or taking a step. Your arm and body should not touch the wall.
8. OK. Go ahead and reach as far as you can.
9. Now, I would like you to do that again.
10. And one more time.

SCORING

1. POSITION OF THIRD RIGHT METACARPAL:

TRIAL 1: \qquad CENTIMETERS

TRIAL 2:
 \qquad CENTIMETERS

TRIAL 3: \qquad CENTIMETERS

REACH:
TRIAL 1: \qquad CENTIMETERS

TRIAL 2: \qquad . CENTIMETERS
TRIAL 3: __ _ _ _ CENTIMETERS
2. TASK WAS:
COMPLETED 1
ATTEMPTED BUT NOT COMPLETED (EXPLAIN) 2
NOT ATTEMPTED (EXPLAIN) 9

Equipment: Page from phone book Telephone Stop watch

Description: Respondent looks up a telephone number and dials it.
Instructions: 1. Ask participant if she usually uses a magnifier to read the telephone book. If she does, ask her to use it.
2. Give participant the page from the telephone book. Ask participant to look up the Morning Star Cleaners (559-7411). Give her a piece of paper to write it on. Start timing when you hand her the page.
3. If the participant cannot find the number, prompt her.
4. If she still cannot find the number, give it to her on a piece of paper.
5. Now ask her to dial the number. You should be positioned so that you can see what she dials.
6. If she cannot dial the number, place her finger on the first number.
7. If she still cannot dial the number, terminate the task.
8. Ask her if she usually uses a push-button telephone or a rotary telephone.
9. Record time for entire task, including prompting. Start when participant starts looking at phone book.

TASK 7: TELEPHONE USE

SCRIPT

1. Next, I am going to ask you to look up a telephone number and dial it on this telephone.
2. Do you use a magnifier to read the telephone book? Use this page from the telephone book to find the number of the Morning Star Cleaners. You can write the number here. HAND HER A PIECE OF PAPER.
3. IF PARTICIPANT CANNOT FIND NUMBER, PROMPT:

Look in the second column about $3 / 4$ of the page down.
4. IF SHE STILL CANNOT FIND NUMBER: That's fine. The number is 559-7411. WRITE NUMBER ON PAD.
5. Now, please dial the number. IF YOU CANNOT OBSERVE, ASK: Please tell me what you are dialing. (CORRECT NUMBER IS 559-7411)
6. IF SHE CANNOT DIAL: Let me show you where the first number is. PLACE HER FINGER ON THE FIRST NUMBER.
7. IF SHE STILL CANNOT DIAL: That's fine. Let's go on to the next task.
8. Do you usually use a push button telephone, like this one, or a rotary telephone? RECORD BELOW.

SCORING

1. FINDING THE TELEPHONE NUMBER:

FOUND CORRECT NUMBER WITHOUT PROMPTING 1
FOUND CORRECT NUMBER WITH PROMPTING 2
FOUND CORRECT NUMBER WITH MAGNIFIER 3
FOUND NUMBER BUT INCORRECT 4
UNABLE TO UNDERSTAND DIRECTIONS AND HOW TO USE PHONE BOOK 5
UNABLE TO READ PRINT OF PHONE BOOK 6
NO NUMBER FOUND, REASON UNKNOWN 0
DID NOT ATTEMPT (EXPLAIN) 9
2. DIALING TELEPHONE NUMBER
DIALED NUMBER CORRECTLY WITHOUT PROMPTING 1
DIALED NUMBER CORRECTLY WITH PROMPTING 2
DIALED NUMBER INCORRECTLY 3
UNABLE TO UNDERSTAND DIRECTIONS AND HOW TO USE PHONE 4 (4)
UNABLE TO DIAL NUMBER DUE TO INABILITY TO USE HANDS 5 (4)
DID NOT ATTEMPT (EXPLAIN) 9 (4)
3. TIME TO COMPLETE TASK:
_ MINUTES

\qquad
SECONDS
4. USUALLY USES: PUSH BUTTON TELEPHONE 1
ROTARY DIAL TELEPHONE 2

Equipment: Colored blocks
Set 1: 4 purple and 1 yellow
Set 2: 5 red, 3 green and 1 yellow
2 design cards
Stop watch
Description: Participant attempts to construct the blocks like the designs on the cards, beginning with the simple card. She goes on to the more complicated design, if she completes the simpler design correctly.

Instructions: 1. Place all of the blocks for both designs mixed together in front of the participant.
2. Ask her to make the simple design, using the correct colors.
3. Start timing when you show her the card.
4. If the participant does not complete the design correctly, go on to the next task.
5. If participant does complete the first design correctly, mix all of the blocks up again, and then show her the more complicated design.
6. Again, start timing when you show her the card.
7. Stop timing when the participant stops trying to complete the design.

SCRIPT

1. I have here a picture of a design. I would like you to make this same design with the blocks in front of you, using the same colors.
2. Ready, begin.
3. IF FIRST COMPLETED CORRECTLY: Now please make this design.

SCORING

1. SIMPLE BLOCK DESIGN

A. TASK WAS:

```
COMPLETED WITH BLOCKS AND COLOR CORRECT1
```

COMPLETED WITH BLOCKS OR COLOR INCORRECT 2
UNABLE TO COMPLETE TASK 3 (TASK 9)
NOT ATTEMPTED (EXPLAIN) 4 (TASK 9)
B. TIME TO COMPLETE TASK: \qquad MINUTES \qquad。 SECONDS

$$
\begin{aligned}
& \text { IF } 1 A=2 \text {, GO TO TASK } 9 . \\
& \text { IF } 1 A=1, \text { CONTINUE. }
\end{aligned}
$$

2. COMPLEX BLOCK DESIGN

A. TASK WAS:

1. COMPLETED WITH BLOCK CONSTRUCTION: CORRECT 1
INCORRECT WITH HIDDEN BLOCKS PRESENT 2
INCORRECT WITH HIDDEN BLOCKS MISSING 3
2. COMPLETED WITH COLORS CORRECT 1
INCORRECT 2
3. UNABLE TO COMPLETE TASK 8 (TASK 9)
4. NOT ATTEMPTED (EXPLAliv)
5. NOT ATTEMPTED (EXPLAliv) 9 (TASK 9) 9 (TASK 9)
B. TIME TO COMPLETE TASK: \qquad MINUTES \qquad . SECONDS

Equipment: Card with 8 pictures on it Stop watch

Description: Participant studies a card with 8 pictures on it for 45 seconds. Then the card is taken away and the participant is asked to tell the interviewer as many of the items as she can remember.

Instructions: 1. Ask the participant to look at the card and tell you what each of the objects is.
2. Ask the participant to study the pictures for 45 seconds.
3. Remove card.
4. Ask participant to tell you as many of the objects as she can remember.
5. Stop task after all eight items are mentioned or after participant has been unable to recall any more objects for 30 seconds.

SCRIPT

1. In front of you is a card with 8 pictures on it. I would like you to tell me what each of these objects is.
2. Now, I would like you to look at these pictures for 45 seconds and try to remember as many as you can. It may help you to remember them in order. After 45 seconds, I will take the card away and then ask you to tell me the objects that were on the card.
3. Do you have any questions? OK. Ready, begin.
4. Now, please tell me all of the items that you can remember.

SCORING

1. CHECK OFF ITEMS NAMED BY PARTICIPANT:

WATCH \square	CALCULATOR \square
IRON \square	TOASTER \square
UMBRELLA \square	RADIO \square
LAMP \square	CHAIR

2. TOTAL NUMBER OF ITEMS RECALLED CORRECTLY: \qquad
3. TASK WAS:
COMPLETED 1
ATTEMPTED BUT NOT COMPLETED (EXPLAIN) 2
NOT ATTEMPTED (EXPLAIN) 9
\qquad

IF SCORE IS: LESS THAN 50 AT 10 FEET; OR
LESS THAN 80 AT 5 FEET; OR
ANY TOTAL AT 2.5 FEET
THEN ASK:

1. Have you noticed any recent changes in your vision such as pain around the eyes, blind spots, distortion, blurry vision or haloes around objects, new floaters or flashing lights?

YES \qquad \square GOTO 2
NO \qquad STANDARD ALERT - GO TO 3
2. When did you first notice these symptoms? Did you first notice them . .

Within the past few days, \qquad \square EMERGENCY ALERT - GO TO 5
Within the past few weeks, or \qquad URGENT ALERT - GO TO 4
More than a few weeks ago? \qquad STANDARD ALERT - GO TO 3
3. STANDARD ALERT. I would advise you to have your eyes checked by a qualified eye care professional in the near future. CONTINUE WITH THE PHYSICAL ASSESSMENT.
4. URGENT ALERT. I urge you to have your eyes checked by a qualified eye care professional within the next few days. CHECK THE FIRST BOX ON THE VISUAL ACUITY REPORT. THEN GO TO 6.
5. EMERGENCY ALERT. I urge you to have your eyes checked by a qualified eye care professional today or tomorrow. CHECK THE SECOND BOX ON THE VISUAL ACUITY REPORT. THEN GO TO 6.
6. IF EMERGENCY OR URGENT ALERT GIVEN, DETERMINE PARTICIPANT'S VISUAL ACUITY USING CHART BELOW. RECORD ON VISUAL ACUITY REPORT. THEN CONTINUE WITH PHYSICAL ASSESSMENT. AT END OF INTERVIEW, COMPLETE VISUAL ACUITY REPORT AND HAND ONE COPY TO THE PARTICIPANT.

| SCORE | Acuity Score Sheet |
| :---: | :---: | :---: | :---: |
| 5 FT | |$\quad 2.5$ FT

Appendix D

Home Physical Examination

Contents

D-2

WOMEN'S HEALTH AND AGING STUDY

HOME PHYSICAL EXAMINATION

CONFIRMATION OF APPOINTMENT:

CALL PARTICIPANT EARLY IN THE EVENING ON THE NIGHT BEFORE THE EXAMINATION IS SCHEDULED.

Hello, Ms. \qquad , my name is \qquad from Westat. I am the nurse who will be coming to examine you as a part of the Women's Health and Aging Study that we are doing for the National Institutes of Health and Johns Hopkins Medical Institutions.

I just wanted to remind you that the examination is scheduled for tomorrow at \qquad AM/PM.

CONFIRM ADDRESS AND ASK FOR DIRECTIONS IF NECESSARY.

INTRODUCTION AT THE DOOR:

Hello, Ms. \qquad , I'm \qquad from Westat. (We spoke yesterday on the phone.) I am here to examine you as a part of the Women's Health and Aging Study. Before we begin, I need to find an area in the house where we can conduct the exam.

1. LOOK FOR AN AREA WITH TABLE SPACE AND AN UPRIGHT CHAIR.
2. LOOK FOR A COMFORTABLE CHAIR AND FOOT STOOL FOR THE SEMI-RECUMBENT BLOOD PRESSURE.
3. LOOK FOR A 4.5 METER SPACE FOR THE MEASURED WALKS.
4. MAKE SURE THAT THE PARTICIPANT IS DRESSED APPROPRIATELY; I.E., WEARING THE GOWN LEFT BY THE INTERVIEWER AND CASUAL SHOES - NO SLIPPERS.
5. SET UP YOUR EQUIPMENT USING THE GUIDE ON PAGE 61 OF THIS FORM.
Exclusion Criteria D3
1 Observation of Limb Abnormality D5
2 Arm Circumference and Skinfold D6
3 Lung Examination D8
4 Heart Examination D8
5 Holter Monitor D10
6 Resting 12-Lead ECG D12
7 Knee Height D14
8 Joint Examination - Lower Extremities D14
9 Semi-Recumbent Blood Pressure D16
10 Semi-Recumbent Ankle-Arm BP Index D18
11 Physical Performance Measures - Stands D20
12 Measured Walks D22
13 Chair Stand D24
14 Repeated Chair Stands D24
15 Grip Strength D26
16 Pinch Strength D28
17 Upper Extremity Strength D28
18 Upper Extremities Examination D30
19 Hand Photos D32
20 Extra-Ocular Movements D34
21 Confrontational Visual Fields D34
22 Audiometry D36
23 Spirometry D38
24 Knee Extensor Muscle Test D40
25 Hip Flexion Muscle Test D42
26 Shoulder Rotation D44
27 Somatic Sensation D46
28 Purdue Pegboard D48
29 Vibration Sensitivity D50
30 Sitting Chair Step Test D52

6. Lower Extremity Strength
7. Somatic Sensation
8. Purdue Pegboard
9. Vibration
10. Sitting Chair Step Test

Unilateral Hip or AK amputation - Perform measurement on the opposite side
Bilateral Paralyses Lower Extremities
Bilateral Hip or AK Amputation
Bilateral hip replacement within 3 months
Never had a stroke (except first 50)
Paralyses/Contractures upper extremities - attempt
Blind
Bilateral Upper Extremity Paralyses
Bilateral Hand Amputee
Bilateral Paralyses lower extremities
Bilateral Amputation of feet
Bilateral ulcers of the great toe
See pg. 48 of this booklet

1. OBSERVATION (Standing)

No Findings
 1

A. Limb abnormality by observation

Paralysis/paresis YES

Right arm \qquad
\square 1 $\square 2$

Left arm
 1 \square
Right leg \qquad

1

Left leg.

IF YES, DESCRIBE \qquad
\qquad
\qquad

ARM CIRCUMFERENCE

A. Our first measurements will be taken using your right arm. First, I'll need to find the midpoint berween your shoulder and your elbow. I'm going to mark the spot so I can remember where it is.
B. Sit at eye level with the site of measurement. Determine the midpoint of the participant's right upper arm, being sure her right arm is bent at the elbow to form a right angle $\left(90^{\circ}\right)$.
C. Place the tape at zero on the tip of the shoulder. Pull the tape straight down along the back of the arm past the tip of the elbow. Do not bend the tape around the elbow. Locate the tip of the elbow bone (olecranon process) and read the number there to the nearest centimeter. Divide the number by two. The result is the midpoint. Mark the midpoint with the wax cosmetic pencil.
D. Make the appropriate marks on the arm for the triceps subscapular skinfold measurement.
E. Please let your arm hang down and slip it through this tape.
F. Wrap the tape around the arm at the midpoint mark. Check the tension of the tape around the arm. Do not have the tape too loose. Make certain that the tape is flat on the skin all the way around the arm.
G. Take two readings. If they are not within .8 cm of each other, take a third reading. Read the tape to the nearest 0.1 cm .

SKINFOLD THICKNESS

A. Make sure that the caliper dial is set exactly to zero.
B. Have the participant sit on a chair in the same state of undress as for the mid-upper arm CIRCUMFERENCE MEASUREMENT.
C. Sit at the participant's side by the right arm at eye level with the measurement site. Locate the midpoint mark of the arm. Where this line crosses the mid-point mark, draw a short line. You will now have drawn a ${ }^{\circ}+.^{\circ}$
D. Next, I am going to pinch a fold of your skin and use these calipers to measure the width. It might smart, but only for an instant.
E. Gently grasp a fold of skin and subcutaneous adipose tissue with your thumb and index finger about 1 cm above the pencil mark.
F. While maintaining a grip on the skinfold with your thumb and index finger, place the caliper tips over the fold of skin beneath your fingers. This should be about 1 cm below your fingers, at the level of the pencil mark.
G. Gently release the handle of the calipers, (still keeping your thumb and index finger in place). Support the caliper in your right hand. DO NOT RELEASE THE SKINFOLD WITH YOUR LEFT HAND-CONTINUE TO HOLD THE SKINFOLD UNTIL AFTER THE READING IS TAKEN AND YOU HAVE RELEASED THE CALIPER FROM THE ARM.

IMPORTANT: BE ALERT TO THE POSSIBILITY OF THE PARTICIPANT MOVING HER ARM SUDDENLY. IF THE CALIPER PRESSURE IS NOT RELEASED QUICKLY, BRUISING OR LACERATION MAY RESULT.
H. Approximately 3 seconds after releasing the caliper handles, read the caliper dial. Count to yourself. "one thousand one, one thousand two, one thousand three." Note that the dial will probably continue to move. Look straight down at the dial to avold parallax from a side view.
I. Read the caliper dial while it is still on the arm, calling out the measurement to 0.2 mm .
J. Take two readings. If they are not within 2 cm of each other, take a third.
2. ARM CIRCUMFERENCE AND SKINFOLD
A. Arm circumference

B. Circle cuff size and use that cuff for ALL BRACHIAL BP

Arm Circumference	Cuff
$<24 \mathrm{cms}$	Child
$24-32 \mathrm{cms}$	Adult
$33-41 \mathrm{cms}$	Lg. arm
$>41 \mathrm{cms}$	Thigh

C. Skinfold thickness

Comments: \qquad
\qquad

With the participant seated, auscultate the lungs as follows:
A. Listen to posterior chest by asking the participant:
B. Please breathe in and out through your mouth more deeply than usual.
C. Listen to each side of the chest at the lung base, with the stethoscope, beginning on the right side.
D. Listen to at least one entire breathing cycle at each location.
4. HEART EXAMINATION

With the participant still seated, auscultate by listening at Erb's point (third left interspace close to the sternum) and the right and left base. Note if you hear a systolic or diastolic murmur.

Grading of Heart Murmurs

Grade 1 The murmur is not as loud as the heart beat sound. You must concentrate ("tune in") to hear the murmur.
Grade 2 The murmur is at least as loud as the hear beat sounds but not clearly louder.

Grade 3 The murmur is louder than the heart beat sounds but there is no palpable thrill.
Grade 4 The murmur is associated with a palpable thrill.
Grade 5 You can hear the murmur even when only one edge of the stethoscope chest piece is touching the skin (and the other edge is not).

Grade 6 You can hear the murmur even when the stethoscope chest piece is not touching the chest.
3. LUNG EXAMINATION
(Auscultate posterior portion of each lung)

| Breath sounds - intensity | YES |
| :--- | :--- | :--- |
| \quad Bilateral rales that do not clear with coughing | |

4. HEART EXAMINATION

A. Systolic murmur \qquad

B. Diastolic murmur \qquad \square

```
O - None
1-6 - Grade
8 - Don't know
```


Comments:

\qquad
\qquad
\qquad
A. Have the participant assume a semi-recumbent position on the couch or in an armchair with shoulders straight and arms relaxed at sides.
B. Please remove your arms from your gown, but keep the gown draped over your chest. Please try to avoid movements which could cause errors, but feel free to talk.
C. The patches we have put on your chest are attached to a small camera case size monitor that you can carry with you. IIf you can leave the monitor on until tomorrow, we will pick it up at your home.] Please avoid electric blankets, waterbeds, and showering while wearing the recorder. If an electrode or wire comes off, call our office at 410-532-2250 for further instruction. Do not open the recorder once recording has begun.
D. Show the recorder to the panticipant.
E. The recorder picks up only the ECG signals which it receives via the patient cable attached to your chest. It has no microphone, and therefore cannot record voice or other auditory information.
F. Tape the patient lead cable and its wires to the participant's skin, creating stress loops.
G. Make sure that gain settings for channel 1 and channel 3 are on "Full." Check the cassette label to ensure that the proper information has been recorded. Press the pivot arm release button and the pivot arm will swing out.
H. Insert the cassette.
I. Firmly press the participant cable into the participant cable connector.
J. Re-install battery. This starts the recording of the calibration on the tape. The calibration is vital for later ST segment analysis.
K. Insert the recorder into the carrying case.
L. Fasten remaining strap over the recording and participant cable to immobilize the cable connector.
M. Position the recorder at the participant's side using shoulder strap or her bet.

Instructions to Participant for 24-Hour Ambulatory Recording (for first fifty)

- Show the participant how to reconnect a wire when one becomes loose.
- Show the participant how to reattach any loose electrode or tape.
- After the monitor is attached, review the Information Sheet (Exhibit 3-4-12 if applicable) emphasizing:
- The date and time to be removed.
- The equipment is entirely safe.
- The pointers to improve data quality including:

When an electrode pad comes off, tape it back in the same place.

- When a connector becomes loose, snap it back together.
- Wear cotton underwear when possible, to minimize static in the recording.
- Do not get the equipment wet. Sponge baths are fine, but not swimming.
- Electric blankets and heating pads are safe but should not be used because they cause static on the recording.
- \quad The plan for return of the Holter Monitor.
- Leave the Information Sheet with the participant.

6. RESTING 12-LEAD ECG
A. Turn on power to MAC PC. The LCD displays the Main Menu or Standard display.
B. Always follow this same order when inserting limb lead cables.
7. Start with the left leg. Prepare the skin with alcohol and gauze and rub the area vigorously about ten times.
8. Peel an electrode from the carrier card and apply to the skin, pressing gently to ensure good adhesion. Parting the hair, if present, during application helps adhesion.
9. Follow the same procedures to apply the right leg electrode.
10. Next, go to the left arm. The inside of the lower arm has thinner skin and is the preferred electrode site.
11. Prepare the skin with alcohol and gauze and rub the area vigorously about ten times.
12. Follow the same procedures to apply the right arm electrode.
13. Attach the lead wires (RA, LA, LL, RL) to the four extremities.
14. Double check that the right side (RA, RL) lead wires are on the participant's right side and the left side (LA, LL) lead wires are on the left and atrached to the corresponding extremity.
C. Locate positions of the chest electrodes for the Holter Monitor and the ECG.
D. After placing the chest leads, re-drape the top of the gown carefully over the participant's chest. Tie the gown securely to maintain modesty.
E. After preparing the chest and limb electrodes, place the ECG patient cable distribution block on the participant's lap, being extremely careful NOT TO TANGLE the wires. DO NOT PULL OR JERK THE WIRES.
F. Now, please relax, breathe normally, and remain still (without talking) while the tracing is recorded. This will not hurt you.
G. Enter the participant (P) information into the MAC PC.
H. Perform the ECG.
I. Remove the tracing from the MAC PC.

Comments: \qquad

KNEE HEIGHT

A. Have the participant lie semi-recumbent on her back and bend her LEFT knee and ankle, each to a 90° angle. Place the fixed blade of the caliper under the heel of the left foot just below the lateral malleolus of the fibula, so that the shaft of the caliper passes over the lateral malleolus and just posterior to the head of the fibula.
B. Place the movable blade over the anterior surface of the left thigh, above the condyles of the femur, about 2 inches above the patella.
C. Hold the shaft of the caliper parallel to the shaft of the tibia and apply pressure to compress tissue. Take two measurements.
D. Measure knee height on the left leg. If the left leg cannot be measured, use the right leg instead.
8. JOINT EXAMINATION - LOWER EXTREMTY
A. Observe feet for deformities such as bunions or hammer toes - record any amputated toes.
B. Press the index finger over the bony prominence of the tibia or medial malleolus (of the ankle) for several seconds. A depression that does not rapidly refill and resume its original contour indicates pitting edema. Check the presence or absent box for the right and left ankle.
C. Examine knee with participant seated. Knee should be extended with the foot supported by a stool or the examiner's knee and the quadriceps muscle relaxed.

1. Palpate the joint line for tenderness and bony enlargements.
2. Palpate the patella using direct pressure for tenderness.
3. Conduct passive range of motion for each knee. Assess any loss of motion.
4. Check for knee joint manifestations.
D. Examine hip with the participant seated. Conduct passive range of motion for each hip. Test both internal and external rotation of each hip.
E. Put socks on participant if her feet are cold.

	KNEE HEIGHT Left knee \qquad Right knee \qquad Participant cannot bend either knee \qquad Other (SPECIFY) \qquad Participant refused \qquad \square First reading. \qquad \square \square . \square cm Second reading \qquad \square \square \square	
8.		
	B. Knee joint manifestations \square	
	C. Hip manifestations Right Left NO Pain on passive motion \qquad \square 1 \square 2 \square 1 \square 2	
	D. Ankle edema Present Absent Right ankle \qquad \square 1 \square 2 Left ankle \qquad \square 1 \square 2	
	Right Left E. Angular deformity \square	$\begin{aligned} & 0=\text { Normal Varus } 0-5^{\circ} \\ & 1=\text { Varus or Valgus of }>5^{\circ} \end{aligned}$

9. SEMI-RECUMBENT BLOOD PRESSURE

Participant position

Extinguish all smoking material
Rest right arm on table, palm up
Meniscus at level of observer's eye
Mercury columns vertical
Arm supported at heart level

Right sleeve rolled up
Assume relaxed, comfortable position
Sit quietly with legs uncrossed

Cuff applied snugly with bottom edge one inch above crease in elbow
A. When not already done: Please remove your shoes and stockings so that your ankles are bare to the mid-calf.
B. Remove the sleeve from the right arm.
C. Have the participant remain in the semi-recumbent position with her right side toward you and her feet elevated on a stool. The participant should be in the semi-recumbent position for at least 5 minutes before measuring the blood pressure.
D. Place the blood pressure cuff on the participant's right arm. Use the cuff indicated by the arm circumference measurement.

- Right ankle - standard aduth cuff
- Left ankle - standard adult cuff

9. SEMI-RECUMBENT BLOOD PRESSURE INDEX
A. Right arm ... L_{1}
D. Seated heart rate
$\mathrm{IF} \geq 120$ OR $\leq 45 / \mathrm{MINUTE}$ ALERT: DO NOT DO SITTING CHAIR STEP TEST
E. MIL

Palpated systolic. \qquad
\qquad

Add 30:
$+30$
Maximal inflation level: (palpated systolic + 30) \qquad
\qquad
F. Semi-recumbent auscultatory blood pressure

First reading	SBP	DBP	
Second reading	SBP	DBP	
Third reading	SBP	DBP	
Total	SBP	DBP	
Average	SBP	DBP	

(REPORT THIS AVERAGE TO PARTICIPANT PER CHART) - - - \gg

DO NOT REMOVE CUFF

CIRCLE INTERSECTION OF SYSTOLIC AND DIASTOLIC						
SYSTOLIC	DIASTOLIC					
	≤ 84	$85-89$	$90-99$	$100-109$	$110-119$	≥ 120
	1	2	3	4	5	6
$130-139$	2	2	3	4	5	6
$140-159$	3	3	3	4	5	6
$160-179$	4	4	4	4	5	6
$180-209$	5	5	5	5	5	6
≥ 210	6	6	6	6	6	6

Comments: \qquad
10. SEMI-RECUMBENT ANKLE ARM BLOOD PRESSURE
A. Locate the brachial artery and right and left posterior tibial by palpation. Mark each with a wax cosmetic pencil.
B. Apply the standard adult cuffs to the ankles with the midpoint of the bladder over the posterior tibial antery, with the lower end of the bladder approximately 3 cm above the medial malleolus. Spiral the ankle cuffs.
C. Apply Doppler gel to the brachial artery of the right and left posterior tibial pulse points.
D. Connect the sphygmomanometer to the arm cuff at eye level.
E. Determine the Maximum Inflation Level.
F. Right arm systolic blood pressure measurement

1. Sit next to the participant's right arm.
2. Attach the right arm culf tubing to the manometer.
3. Place the Doppler stethoscope in your ears.
4. Locate the right brachial artery using the stethoscope.
5. Measure the systolic blood pressure using the stethoscope.

- Inflate the cuff quickly to the MIL
- Deflate the cuff at 2 mm Hg /second to the appearance of the brachial systolic pressure (the first sound of two consecutive beats)
- Deflate the cuff quickly and completely - Disconnect the right arm cuff from the manometer.

6. Record the right arm systolic blood pressure.
G. Ankle systolic blood pressure measurement: Move to the participant's feet and place the manometer between her ankles.
7. Connect the right ankle culf to the manometer.
8. Place the Doppler stethoscope in your ears.
9. Locate the right posterior tibial artery using the stethoscope.
10. Measure the systolic blood pressure using the stethoscope. a. Inflate the cuff quickly to the maximal inflation level b. Deflate at $2 \mathrm{~mm} \mathrm{Hg} /$ second to the appearance of the right ankle systolic pressure (the first sound of two consecutive beats)
c. Deflate the cuff quickly and completely
11. Disconnect right ankle cuff from manometer.
12. Record the right ankle systolic blood pressure.
13. Repeat for left ankle.
14. Wait for 30 seconds.
H. Repeat of ankle-arm measurements: Repeat the sequence of measures in the reverse order:
15. Left ankle.
16. Right ankle.
17. Right arm.
18. Remove the cuffs and conducting jelly with an alcohol swab and a soft tissue.
19. SEMI-RECUMBENT ANKLE-ARM BLOOD PRESSURE INDEX
E. Systolic readings
(1) First readings:
Right brachial...
Right posterior tibial...
Left posterior tibial ..
(2) Second readings:

Left posterior tibial

Right posterior tibial. \qquad

Right brachial \qquad

F. Ankle-Arm BP not done
\square

REASON NOT DONE:

Rash/skin sores.
REASON NOT DONE \square

Ulcers.. 2
Bil. Amputation-legs................... 3
Rigid arteries............................. 4
Other (SPECIFY)........................ 6

Participant refused . .7

Comments: \qquad
G. Reason BP not attempted/completed:

Not attempted, you felt unsafe
Not attempted, participant felt unsafe

Unable to determine MIL
Un .. L 3
Pulse could not be felt/counted 4

Other (SPECIFY) 6

Participant refused 7
H. Comments: \qquad

11. STANDS - AIDS MAY NOT BE USED

The participant must be able to stand unaided. You may help her get up.

Now let's move on to a more active part of the exam. I would now like you to try to move your body in different movements. I will first describe and show each movement to you. Then l'd like you to try to do it. If you cannot do a particular movement, or if you feel it would be unsafe to try to do it, tell me and we'll move on to the next one. Let me emphasize that I do not want you to try to do any exercise you feel might be unsafe.

Do you have any questions before we begin?

A. SIDE-BY-SIDE STAND

1. Now I will show you the first movement (DEMONSTRATE).
2. I want you to try to stand with your feet together, side-by-side, for about 10 seconds.
3. You may use your arms, bend your knees, or move your body to maintain your balance, but try not to move your feet. Try to hoid this position until I tell you to stop.
4. Stand next to the participant to help her into the side-by-side position. Allow the paticipant to hold ontc your arm(s) to get balance.
5. Supply just enough support to the participant's arm to prevent loss of balance.
6. When the participant has her feet together, ask if she is ready.
7. Say "when you are ready, let go of my arm." Start timing when the participant lets go.
8. Stop the stopwatch and say "stop" after 10 seconds or when the participant steps out of position.
9. If participant unable to hold for 10 seconds, go to test 13 .

B. SEMI-TANDEM STAND

1. Now I want you to try to stand with the side of the heel of one foot touching the big toe of the other foot for about 10 seconds. You may put either foot in front, whichever is more comfortable for you.
2. Please watch while I demonstrate.
3. You may use your arms, bend your knees, or move your body to maintain your balance, but try not to move your feet. Try to hold this position until I say stop.
4. If participant unable to hold for 10 seconds, go to test 13.
C. TANDEM STAND (eyes open)
5. Now I want you to try to stand with the heel of one foot in front of and touching the toes of the other foot for about 10 seconds. You may put either foot in front, whichever is more comfortable for you.
6. Please watch while I demonstrate.
7. You may use your arms, bend your knees, or move your body to maintain your balance, but try not to move your feet. Try to hold this position until I say stop.
8. STANDS - AIDS MAY NOT BE USED
A. SIDE-BY-SIDE STAND

Held for 10 seconds ... 10
Number of seconds held if
 (GO TO 12)
Not attempted
(IF NOT ATTEMPTED)
Tried but unable .. 1
Not attempted, you felt unsafe 2
Not attempted, participant felt unsafe 3
Participant could not stand unassisted 4
Participant unable to understand
instructions

Other (SPECIFY

If not attempted \qquad
\square (GO TO 12)

Participant refused .7
B. SEMI-TANDEM STAND

Held for 10 seconds .. 10
Number of seconds held if
less than 10 seconds (GO TO 12)
Not attempted

If not attempted .. \square (GO TO 12)
C. TANDEM STAND

Held for 10 seconds 10
Number of seconds held if less than 10 seconds \qquad
 87
Not attempted
If not attempted \qquad (GO TO 12)
\qquad

12. MEASURED WALKS

1. Now we are going to observe how you normally walk. If you use a cane or other walking aid and would feel more comfortable with it, then you may use it.
2. If participant cannot walk, even with an aid such as a cane, walker, or leaning on a wheelchair, code "cannot walk, even with support, ${ }^{\circ}$ and skip to test 13.
A. FIRST USUAL WALK
3. This is our walking course. I want you to walk to the other end of the course at your usual speed, just as if you were walking down the street to go to the store. Walk all the way past the other end of the tape before you stop. I will walk with you. Do you feel this would be safe?
4. Demonstrate the walk for the participant.
5. When I want you to start, I will say. "Ready, begin."
6. Have the participant stand with both feet touching the starting line.
7. WHEN THE PARTICIPANT IS PROPERLY POSITIONED AT STARTING LINE, SAY: "Ready, begin."
8. Press the start/stop button to start the stop watch as the participant begins walking.
9. Walk beside the participant.
10. Press the split button when the participant's toe crosses the 1-meter mark.
11. Stop timing by pressing the start/stop button when the participant's toe crosses the end line.
B. SECOND USUAL WALK

Now I want you to repeat the walk. Remember to walk at your usual pace, and go all the way past the other end of the course.
C. RAPID WALK

Now I want you to repeat the walk. This time I would like you to walk at a RAPID pace as fast as you can, and go all the way past the other end of the course. DEMONSTRATE 'Ready? . . . Begin."
12. MEASURED WALKS

Three meters \qquad
\square2

No three meter space available \qquad
\square 3 (GO TO 13)
A. Time for first usual pace walk (in seconds)

1. Time for first meter \qquad

2. Time for 3 or 4 meters \qquad

3. IF NOT ATTEMPTED/COMPLETED \qquad
\square (GO TO 13)

IF ATTEMPTED (SUCCESSFUL OR NOT)

\square

(IF NOT COMPLETED)

Tried but unable1
Not attempted, you felt unsafe 2
Not attempted, participant felt unsafe 3
Could not walk, even with support 4
Participant unable to understand instructions 5
Other (SPECIFY 6
Participant refused 7
(IF ATTEMPTED)
Wheelchair (as walking aid) 2
Walker 3
Quad cane4
Other cane 5
Other walking aid6

Comments:

\qquad
B. Time for second usual pace walk (in seconds)

1. Time for first meter \qquad

2. Time for 3 or 4 meters \qquad
 \square
3. IF NOT ATTEMPTED/COMPLETED \qquad \square (13)

IF ATTEMPTED (SUCCESSFUL OR NOT)

4. Aids for second walk \qquad

(IF NOT ATTEMPTED/COMPLETED) CODE ALL THAT APPLY

Tried but unable 1
Not attempted, you felt unsafe 2
Not attempted, participant felt unsafe 3
Could not walk, even with support 4
Participant unable to understand instructions 5
Other (SPECIFY 6
Participant refused 7
C. Time for rapid walk (in seconds)

1. Time for first meter \square
\square
2. Time for 3 or 4 meters \qquad
\square \square
3. IF NOT ATTEMPTED/COMPLETED \qquad
IF ATTEMPTED (SUCCESSFUL OR NOT)
4. Aids for rapid walk \qquad
5. CHAIR STANDS
A. Measure height of chair.
B. If participant in wheelchair, say. Can you get up from your wheelchair by yoursel?
C. Do you feel it is safe to try to stand up without using your arms?
D. The next tests measure the strength in your legs. First, please fold your arms across your chest and sit so that your feet are on the floor; (DEMONSTRATE)

If participant cannot rise without using arms, say. "O.K., try to stand up using your arms." Then go to test 15.
14. REPEATED CHAIR STANDS
A. Do you think it is safe for you to try to stand up from a chair five times without using your arms?
B. Take participant's heart rate for 30 seconds.
C. Please stand up straight as quickly as you can five times, without stopping in between. After standing up each time, stt down and then stand up again. Keep your arms folded across your chest. (DEMONSTRATE) l'll be timing you with a stopwatch. Please begin when I say "Ready? . . . Stand."
D. Stop if participant becomes tired or short of breath during repeated chair stands. Go to test 15.
E. When the participant is properly seated, say. "Ready? . . . Stand." and begin timing.
F. Count out loud as she arises each time, up to five.
G. Stop the stopwatch when she has straightened up completely the fith time and all body movement has ceased.
H. If the participant sits down after the fifth stand-up, stop timing as she begins to sit down.

1. Also stop:
2. If participant uses her arms
3. After 1 minute, if participant has not completed rises
4. At your discretion, if concerned for participant's safety.
J. IF THE PARTICIPANT STOPS AND APPEARS TO BE FATIGUED BEFORE COMPLETING FIVE STANDS, CONFIRM THIS BY ASKING: Can you continue?
K. If she says yes, continue timing. If she says no, stop and reset the stopwatch.

L Take participant's heart rate for 30 seconds.
13. CHAIR STANDS
A. Chair height (floor to seat) \qquad

B. Wheelchair \qquad
C. Get up
D. Safe to stand

YES NO NA

$\square 2$ \square
12 (GOTO F)
1 \square 2 (GOTOF)

E. Results:

Participant stood without arms \qquad
\square
Participant used arms to stand \qquad
1

Test not completed \qquad
\square 2 (GO TO 15) 3 (GO TO F)
F. IF NOT COMPLETED/ATTEMPTED:

Unable to stand \qquad
Tried but unable \qquad
Not attempted, you felt unsafe \qquad
Not attempted, participant felt unsafe \qquad
Chair or bed bound \qquad
No suitable chair \qquad
Other (SPECIFY) \qquad

Participant refused \qquad
01 02

\square

14. REPEATED CHAIR STANDS
A. Safe to stand five times \qquad
 2 (GO TO D)
B. Heart rate prior \qquad

C. (IF FIVE STANDS DONE SUCCESSFULLY, RECORD TIME IN SECONDS.)

Time to complete five stands \square
\square seconds (GOTOE)
(IF LESS THAN FIVE STANDS, RECORD NUMBER OF STANDS \square
D. IF NO STANDS COMPLETED

Tried but unable \qquad
\square
Not attempted, you felt unsafe \qquad
Not attempted, participant felt unsafe

No suitable chair \qquad
\square3No suitable chair ..]

instructions
5

Other (SPECIFY) \qquad
\square

Participant refused \qquad

E. Heart rate after \qquad ..

15. GRIP STRENGTH
A. Conduct examination with the participant in the sitting position with the arm to be tested pressing against her side at a right angle.
B. Check which hand is being tested first (dominant hand) in the space provided in " α°. Check which hand is being tested second (non-dominant) in the space provided in "f."
C. In this exercise, I am going to use this instrument to test the strength in your hands. Have you had a recent worsening of pain or arthritis in your wrist, or do you have tendonitis?
D. Have you had any surgery on your hands or arms during the last 3 months?
E. I'd like you to take the arm that you think is stronger, bend your elbow and press your arm against your side. Now, grab the two pieces of metal together like this (Demonstrate). When I say "squeeze," squeeze as hard as you can. It won't feet like the bar is moving, but we are able to get a reading.
F. Press Holter Marker and enter time.
G. I want you to do this three times. If you feel any pain or discomfor, tell me and we will stop.
H. Repeat the examination three times on the dominant hand, then swith the dynamometer to the non-dominant hand and test the grip strength three times on the non-dominant hand. Set dynamometer to $0^{\circ} 0^{\circ}$ after each test. With each test say. "Squeeze as hard as you can" and when they begin to squeeze say, "Sqeeze, squeeze, squeeze."
I. Press Holter Marker and enter time.

16. PINCH GAUGE
A. Please put your arm on this (table/arm rest).
B. Bend the participant's elbow to a 90° angle and have the participant press the arm to be tested against her side. The pinch meter should not be resting on anything. This is the position for both pinches.
C. I want you to pinch this meter as hard as you can, using your thumb and index finger, like this.
D. Demonstrate. Then place meter in participant's right hand in the correct position.
E. The correct position is between the pad of her thumb and the lateral surface of the index finger of her right hand.
F. Now, repeat that with your left hand.
G. Again place meter in correct position.
17. UPPER EXTREMTY STRENGTH - OVERHEAD LIFT
A. Have you had any surgery on your upper or lower extremity joints, abdomen, or chest in the past 3 months? IF YES, GO TO TEST 18.
B. Next, I want you to sit facing me and lift this jug so that the bottom of it is at your eye level, and then over your head, before lowering it back to touch your lap.
C. Demonstrate.
D. With the participant seated, place the Purdue Pegboard on her lap.
E. Now lift the weight using both hands. Please do not strain or hold your breath to lift the jug. For safety reasons, I need to loosely hold the handle at the top of the jug, but I will not be helping you lift it. Remember to try to litt the jug so that it goes in front of your eyes and then over your head.

Comments:

\qquad
18. UPPER EXTREMTIES EXAM

A. WRISTS

1. Observe the right and left wrists for signs of swelling.
2. Gently palpate for tenderness by applying direct pressure on the joint line at the distal radius and ulnar styloid process.
3. Palpate for swelling over the extensor surface and just distal to the ulnar styloid process.
4. Conduct passive range of motion of the right and left wrist by anchoring the forearm with one of your hands, with your other hand holding the participant's hand. Gently bend the participant's hand backward to the limit. Straighten the hand. Then bend the participant's hand forward, closing her fingers to make a fist, to the limit. Open and straighten the hand. Assess any loss of motion and note if the participant complains of pain on passive range of motion.
5. While you examine the wrists, note the presence of radial deviation and carpal subluxation.
B. HANDS - MCP JOINTS
6. Check for tenderness of the MCP joints as a group by performing lateral compression of the hand at the line of the MCP joints. If any joints are tender, confirm by direct palpation over the dorsum of each joint. In addition, directly palpate the MCP 1 joint for tenderness.
7. Ask the participant to close each hand into a fist. When the hand is in a closed fist, inspect the areas between the joints for synovial swelling. . Confirm the swelling by palpation over the dorsum of the joint.
8. Conduct passive range of motion for the MCP joints of the right and left hands by anchoring the participant's hand with one of your hands while your other hand gently extends and flexes the MCP joint(s). Assess loss of motion, if any. The normal range of motion for the MCP joints of the second through fifth digits is -30° (hyperextension) to 90° flexion. If the participant complains of pain, identify individual joints.
C. PIP JOINT
9. Check for tenderness of the PIP joints as a group by compressing both sides of the hand at the line of the PIP joints. If any joints are tender, confirm by direct palpation.
10. Inspect participant's hands for evidence of synovial swelling; distinguish between bony enlargement (Bouchard's Nodes) and synovial swelling by palpation. The bony enlargements will be hard, while synovial thickening/or fluid will be spongy.
11. Conduct passive range of motion for the PIP joints of the right and left hands by anchoring the MCP joints with one of your hands, while your other hand gently extends and flexes the PIP joints as a group. The normal range of motion for PIP joints is from 0° to 90° flexion. Assess any loss of motion. If participant complains of pain, identify individual joints.

12. Thumb Interphalangeal Joint

Conduct passive range of motion on the IP joint of each thumb by anchoring the first carpometacarpal joint with one of your hands while the other hand gently extends and flexes the IP joint of one thumb to the limit. Normal range of motion of flexion and extension in the interphalangeal joint of the thumb (first digit) is $35^{\circ}-90^{\circ}$ (Exhibit 3-2-2). Assess any loss of motion and identify if pain is present on passive motion.
D. DIP JOINT

1. Gently palpate the dorso - medial and dorso - lateral aspects of the DIP joints of the right and left hand. Note any tenderness or bony enlargements (i.e., Heberden's nodes). Differentiate bony enlargements from synovial swelling. Bony enlargements will be hard and normally not tender. The synovium will be spongy and sometimes tender.
2. Conduct passive range of motion on each DIP joint of the right and left hand by anchoring the PIP joint of each finger with one of your hands, while the other hand gently extends and flexes the DIP joint to the limit. Assess any loss of motion and identify if pain is present on passive motion.
E. FIRST CARPOMETACARPAL (CMC) JOINT

1 Inspect the first CMC joint for swelling or bony thickening. If either appears to be present, palpate the joint to distinguish between boggy soft tissue swelling or bony thickening and spurs.
2. Abduct the first CMC joint by gently pressing the side of the thumb to the palm of the hand and then abduct the CMC joint by gently raising the thumb from the supinated palm. Identify if pain is present on passive motion.
19. HAND PHOTOS

20. EXTRA-OCULAR MOVEMENTS

Do you wear glasses? IF YES: Please put them on.
Hold your hands as a target in the midline above eye level, about 20 inches (50 cm) away from the participant. Move your hands rapidly downward in the midline, watching for the appearance of white sclera between the iris and the upper lid margin.
21. CONFRONTATIONAL VISUAL FIELDS - STROKE PATIENTS ONLY
A. Have you had a stroke?
B. Next, please look at my nose and tell me the number of fingers you see on my two hands combined.

Step 2 Remind the participant to look at your nose. Again look at her eyes and hold your hands in the lower outer quadrant

Step 3 - If the participant is unable to pass the test (incorrectly identifies the number of raised fingers in the upper or lower

Step 1

Step 4

Step 5

- Look at the participant's eyes and hold your hands in the upper outer quadrant bilaterally so that she can easily see both hands.
- Your hands should be in the "fisted" position, approximately 3 inches above eye level, 12 inches apart, and equidistant between the participant and your eyes.
- Extend the forefinger and the pointer finger on the right and the forefinger on the left, quickly at the same time. Fingers are extended upward in both upper and lower quadrants.
- The upper quadrant test is negative (no evidence of left or right visual field deficit/extinction) when the participant indicates that she saw three fingers. bilaterally so that she can easily see both hands.
- Your hands should be in the "fisted" position, approximately 3 inches below eye level, 12 inches apart, and equidistant between the participant and your eyes.
- Extend the forefinger on the right and left side quickly at the same time.
- The lower quadrant test is negative (no evidence of left or right visual field deficit/extinction) when the pantcipan: indicates that she saw two fingers. quadrant) as outlined in Steps 1 and 2, repeat Steps 1 and 2 twice. Raise your fingers as indicated on the data collection form.
- If there are errors on two of the three tests for the upper or lower quadrant, you must determine whether the problem is extinction or visual field deficit. Do this by retesting the impaired quadrant three times using only unilateral movement. Uniform testing of other visual field areas is necessary in this sequence to prevent the partcipant from guessing where the stimulus is. Use the sequence:

Trial 1: extend the forefinger and pointer in right upper quadrant, and then the forefinger in the left upper quadrant, then the forefinger and pointer in the right lower quadrant, then the forefinger in the left lower quadrant.

Trial 2: extend the forefinger and pointer in left upper quadrant, then the forefinger and pointer in the right lower quadrant, then the forefinger in the left lower quadrant, then the forefinger and pointer in the right upper quadrant.

Trial 3: extend the forefinger in right lower quadrant, then the forefinger and pointer in the left upper quadrant, then the forefinger and pointer in the left lower quadrant, then the forefinger and pointer in the right upper quadrant.

If there were errors on Steps 3 or 4 , ask: Can you think of any reason you might have had trouble doing this test?

22. AUDIOMETRY

A. Before starting, make sure that the lens is centered in the instrument.
B. Select an area that is relatively quiet and free from distracting conversation, fan noises, etc.
C. Screen each ear twice, alternating ears; beginning with the left ear.
D. Select a small, medium, or large AudioSpec ear speculum. Use the largest speculum that can be inserted comfortably into the ear canal, yet still allow visualization of the tympanic membrane. A snug fit assures an acoustic seal of the speculum in the ear canal. Secure the AudioSpec to AudioScope3 by twisting it clockwise onto the instrument.
E. Tum Audioscope3 "ON' by sliding the selection switch to the 40 dB HL screening level. The white indicator band should completely fill the square next to desired sound level. The green "READY' indicator will light, indicating that the instrument is ready for service.
F. I will be placing this instrument in both of your ears, first the left and then the right. You will hear certain sounds or tones. There will be a maximum of 10 tones that you will hear in each ear. Please raise your hand each time you hear a tone in the ear being tested and put your hand down when the tone stops.
G. Before examining either ear, note serous, purulent, or sanguineous discharges from the meatus. If any discharge is presen: in either ear, do not examine that ear. If no discharge is present, select the largest speculum that will fit the cartilaginous canal of the participant's ear.
H. Retract the participant's pinna with the thumb and index finger. Gently pull it slightly up and back. This faciltates insertion of the tip.
I. Grasp AudioScope3 and gently insert speculum tip into the ear canal. Since the lining epithelium of the bony canal is very sensitive, use gentle manipulation to insert the speculum. The handle may also be held in a horizontal position. Use your little finger to stabilize the instrument with respect to the participant's head.
J. Position the tip so that the tympanic membrane or a portion of tit can be visualized. This visualization ensures free passage of sound. Before attempting visualization, tip the participant's head toward her opposite shoulder to bring the canal horizontal.
K. Maintain AudioScope3 in the same position and depress the "START" button. The green light will then go out, and tone indicators which show the tone being presented will light sequentially.
L. Observe each tone indicator and the participant's response. If, for any reason (i.e., participant movement, excessive ambient noises, etc.), the test is disrupted, restant it at any time by depressing the 'START' button again. It is imponant to keep AudioScope3 stationary during the test to prevent generation of noise.
M. Repeat Steps 7 through 12 on the opposite ear.
22. AUDIOMETRY
A. Cerumen in ears preventing visualization of tympanic membrane
Right. \qquad
\qquad 1
Left. \square 2

B. (1) Air conduction - left ear					(2) Air conduction - right ear				
Frequency (Hz)	Trial 1		Trial 2		Frequency (Hz)	Trial 1		Trial 2	
	YES		YES			YES			
1000	1	2	1	2	1000	1	2	1	2
2000	1	2	1	2	2000	1	2	1	2
4000	1	2	1	2	4000	1	2	1	2
500	1	2	1	2	500	1	2]	2

C. Results of audiometry.

Test done.. \quad. 1
Test incomplete \qquad

Test not done \qquad
\square3
D. Reason test incomplete or not done
Tried but unable\square1
Not attempted, you felt unsafe\square2
Not attempted, participant felt unsafe \square 3Participant unable to understand instructions\square4Other (SPECIFY)
Participant refused

\qquad

\square7

Comments: \qquad
\qquad
\qquad
A. Now we will do a test to measure your lung performance.
B. First, I have some questions about your health. (ASK QUESTIONS ON NEXT PAGE.)
C. Enter participant information.
D. Explain and demonstrate the following procedures:

1. Proper placement of the mouthpiece;
2. Maximal inhalation;
3. Blasting of air into the tube.
E. Insert a new spirotube into the mouthpiece.
F. Please stand up and loosen any tight clothing. (Please also remove any loose dentures or gum.) PLACE A NON. ROLLING CHAIR BEHIND THE PARTICIPANT.
G. Please extend and elevate your chin. DEMONSTRATE PLACEMENT OF THE NOSECLIP ON THE NOSE.
H. Have the participant do a trial exhalation.
4. First put this clip on your nose.
5. Take a great big deep breath of air as far as you can inhale.
6. Put the mouthpiece into your mouth and seal your lips tightly around it.
7. Blast your air into the tube as hard and fast as you can.
8. Keep on blowing out the same breath of air until I tell you to stop.
I. Give the sensor to the participant.
J. Coach participant.
K. If participant terminates early, say. Even if you feel empty, small amounts of air are still coming out, so keep pushing and blowing.
L. Conduct one practice and five trials.

Reproducibility: - 2 FVC'S within 5 percent and

- 2 FEV1'S within 5 percent

Acceptable: Three tests must be free of extrapolated volume errors, obstruction, submaximal effort, coughs, and/or early termination.

Comments: \qquad
24. KNEE EXTENSOR MUSCLE TEST
A. General instructions for use of a manual dynamometer:

1. Position participant comfortably.
2. Measure and/or position the instrument carefully.
3. Attain the correct tester body position.
4. Slowly build up resistance to the participant's motion white coaching.
5. Avoid explosive movements.
6. Gently relieve pressure after the limb has begun 10 give way and before the limb returns to the surface.
B. Knee Extensor Muscle (Quadriceps) Test
7. Always test the right leg first, unless the participant has had a stroke; then test the unaffected side first.
8. Participant Position - Seat participant in a hard chair. She may place her hands on the front edge of the chair seat but should not lean backwards during the test.
9. Test the participant's right quadriceps first by placing your hand a few inches above her ankle and lift her foot up (extending the knee) until the knee is almost straight. This establishes the participant's passive range of motion.
10. Then ask the participant to lift the foot up to the same position and then tower the knee 15° from the floor. This establishes the participant's active range of motion.
11. Hold the dynamometer with your stronger hand, elbow bent to 90° and pressed in against your abdomen and upper front part of your pelvis for extra support. Your opposite hand may hold onto the wrist of the arm that is holding the dynamometer to give extra strength and stability.
12. With the knee extended 15° from the floor, place an ABD pad and the dynamometer a few inches above the right ankle, between the medial and lateral malleolus.
13. When I count three, I will begin to push against your leg. Please hold your leg here. Don't let me push it down. When I say "push, push, push," I want you to push against the bar as hard as you can. Don't be afraid to push as hard as you can.
14. Push hard enough to move the subject's leg down.
15. Apply pressure for 5 seconds, encouraging the participant to push up, while you push down.
16. Record the trial to the nearest kilogram. Record whether you were able to overcome the participant's resistance by moving the leg down a little.
17. Record if the participant mentions feeling any pain.
18. Reset the dynamometer to ZERO for the next trial.
19. Alternate legs to do two trials on each leg.
20. KNEE EXTENSOR MUSCLE TEST
A. Trial 1

B. Trial 2

C. Test not done on right leg \qquad
\square

IF NOT DONE:
Participant unable to
lift foot/knee 1
Not attempted, you felt unsafe
Not attempted, participant felt unsafe 3
Other (SPECIFY)

Participant refused 7

Comments: \qquad
\qquad

Test the iliopsoas muscle first manually and then with the dynamometer.
A. Have you had a hip replacement within the past 3 months?
B. Seat the participant in a hard chair. She may place her hands on the front edge of the chair seat but should not lean backwards during the test.

Participants who have difficulty sitting or who are bed bound should be in the supine position on a bed or couch. The participant's knee should be flexed with the heel resting on the bed.
C. Manual Testing

1. Press Hotter Marker and enter time.
2. Always test the right side first, unless the panicipant has had a stroke; then test the unaffected side first.
3. To test the participant's right iliopsoas, hold your hand 5 inches above her knee and, using your other hand, lift her knee up to your hand. This establishes her passive range of motion.
4. Then ask the participant to lift the knee up into your hand (using leg muscles) and then lower the knee so the foot is again on the floor. Again, hold your hand 5 inches above her knee.
5. Assess if. the participant can lift her knee; cannot lift her knee but you could see or palpate contractions; or the participant cannot lif her knee and you cannot see or palpate contractions.
6. Record the strength: 1,2 or 3 .
D. Dynamometer Testing
7. Always test the right side first, unless the participant has had a stroke; then test the unaffected side first.
8. Hold the dynamometer with your stronger hand, elbow bent to 90° and pressed in against your abdomen and upper front part of your pelvis for extra support. Your opposite hand may hold onto the wrist of the arm that is holding the dymamometer to give extra strength and stability.
9. Place the dynamometer immediately proximal to the femoral condyles at the distal thigh.
10. When the dynamometer is in place, say. "Now I want you to lif your knee to my hand. When I count three I will begin to push against your knee. I want you to hold your knee here, don't let me push it down. When I say "push, push, push," I want you to push against the bar as hard as you can. Don't be afraid to push as hard as you can.
11. Push hard enough to move the participant's knee down.
12. Apply pressure for 5 seconds, encouraging the participant to push up while you push down.
13. Record the trial to the nearest kilogram.
14. Record whether you were able to overcome the participant's resistance by moving the knee down a little.
15. Reset the dynamometer to ZERO for the next trial.
16. Alternate knees to do two trials on each knee.
17. Press Holter Marker and enter time.

Comments: \qquad
26. SHOULDER ROTATION
A. Now l'd like you to put both hands behind your neck at the level of your ears. Keep your arms parallel to the floor and point your elbows out to the side.
B. Demonstrate position.
C. The participant performs the test for both sides simultaneously, score her separately for each side. She should sit erect or stand. Face her to score this test.
D. Now l'd like you to move your arms behind your back and touch your fingers together behind your back.
E. Demonstrate position.
F. The participant performs the test for both sides simultaneously, score her separately for each side. She should be sitting erect.
26. SHOULDER ROTATION
A. EXTERNAL

Right shoulder
1 - Fully
Left shoulder \square
B. INTERNAL

3 - Unable
7 - Refused
Right shoulder.

Left shoulder \qquad

Comments:

\qquad _

27. SOMATIC SENSORY - FOR STROKE PATIENTS ONLY (Answer to Question 21A is Yes.")

A. Now I am going to see how well you can locate one hand with the other. I will be asking you to close your eyes and place this "Thumb target" on your affected thumb. Then I will move the arm into four different positions. After I have moved your arm into the different positions, I will ask you to locate the thumb of your affected hand with the thumb of your nonaffected hand. Once your thumb makes contact with your other thumb or the target, stop moving it.
B. DEMONSTRATE. Do you have any questions?
C. Which arm was affected by the stroke?
D. Place target on affected thumb.
E. Using the affected arm:

Position 1 1. Randomly move the affected arm. Then flex the affected arm anteriorly 1090°, with the forearm pronated, the elbow flexed to 45°, hand "fisted," and the thumb pointing. Support the arm at the elbow and the wrist.
2. Now try to locate the thumb of your \qquad hand with the thumb of your \qquad hand.
3. Note the distance to the nearest half inch between the affected thumb and the nonaffected thumb on the "Thumb target" when the unaffected thumb first touches the target. If in between, round up (i.e., $2.75=3.2 .25=2.5$, etc.)

Position 2 1. Randomly move the affected arm. Then flex the affected arm anteriorly 1090° with the forearm pronated. The elbow should be slightly flexed, hand "fisted," and the thumb pointing. Support the arm at the elbow and the wrist.
2. Now try to locate the thumb of your \qquad hand with the thumb of your \qquad hand.
3. Note the distance to the nearest half inch between the affected thumb and the nonaffected thumb on the "Thumb target" when the unaffected thumb first touches the target. Round up.

Position 3 1. Randomly move the affected arm. Then flex the affected arm to 45° angle, with the forearm pronated, the elbow flexed to 45°, the hand "fisted," and the thumb pointing. Support the arm at the elbow and wrist.
2. Now try to locate the thumb of your \qquad hand with the thumb of your \qquad hand.
3. Note the distance to the nearest half inch between the affected thumb and the nonaffected thumb on the "Thumb target" when the unaffected thumb first touches the target. Round up.

Position 4 1. Randomly move the affected arm. Then flex the affected arm to a 45° angle with the forearm pronated, the elbow slightly flexed, the hand "fisted," and the thumb pointing. Support the arm at the elbow and wrist.
2. Now try to locate the thumb of your \qquad hand with the thumb of your \qquad hand.
3. Note the distance to the nearest half inch between the affected thumb and the nonaffected thumb on the "Thumb target" when the unaffected thumb first touches the target. Round up.
27. SOMATIC SENSORY

Comments: \qquad
\qquad
\qquad

28. PURDUE PEGBOARD

A. Have the participant seated comfortably at a table approximately 30° high.
B. Place the Purdue Pegboard directly in front of the participant with the cups at the far end of the board.
C. The right cup and the left cup should contain approximately 15 pins each.
D. When the participant is ready to begin, say. This is a test to see how quickly and accurately you can work with your hands. Before you begin each part of the test, I will tell you what to do and then you will have an opportunity to practice. Be sure you understand exactly what to do.
E. Right hand. Before each test, demonstrate the required test. Begin by saying and demonstrating: Pick up one pin at a time with your right hand from the right-hand cup. LEAVE THE PIN USED FOR DEMONSTRATION IN THE HOLE. It is not necessary to push the pin all the way down. DURING DEMONSTRATION PURPOSELY DROP PIN. If during the testing time you drop a pin, do not stop to pick it up. Simply continue by picking another pin out of the cup.
F. Now you may insert a few pins for practice.
G. Correct any errors made in placing the pins, and answer any questions.
H. When the participant has inserted three or four pins and appears to understand the operation, say. Stop. Now take out the practice pins and put them back into the right-hand cup.
I. When I say "Begin," stant placing the pins from the right-hand cup into all the holes in the row, stanting with the top hole. I want you to fill all the holes. I will be timing you. Work as rapidly as you can. Remember, if you drop a pin, do not stop to pick it up. Pick another pin out of the cup.
J. Be sure the participant's hand is at the side of the board. Then say "Ready, begin." Start timing when you say "begin.- After the participant completes placing the 10 pins from the right cup into the row of holes, stop the stopwatch.
K. Repeat Steps E through J for the left hand.

Comments: \qquad
A. Test the right toe. If right toe missing or can't test, test the left toe.
B. During the testing, the bottom of the right great toe should be centered over the vibrating rod. No other part of the foot or the loes should be touching the rod or its housing.
C. I'm going to place your right great toe on this rod. (Have participant place toe on rod). The rod is vibrating now and this is the strongest the intensity will be. I will ask you if the rod is vibrating the first or second time. It is up to you to decide which time it is vibrating, either the first or second time. The intensity of the vibration will be decreasing until you can't feel it anymore. Even when you can't feel the vibration anymore I'd like you to guess anyway."
D. An ideal duration for contact is approximately 2 seconds. You should place your index finger on top of the great toe so you can feel the vibration through the toe. If the participant is pushing down too hard on the vibration rod, you will not feel the vibration.
E. Start at 22.4 vibration units intensity. This should give you at least eight trials without an error. For each setting ask, "Which trial is vibrating, \#1 or \#2?` Later, abbreviate to just "\# 1 or \#2?*
F. If the participant is correct on the first trial, reduce the vibration intensity by approximately 10 percent. (This is indicated on the form vertically.) Continue this procedure until she makes her first error.
G. When the participant makes her first error, repeat the same intensity level twice, for a total of three trials at that level. For these trials at the same intensity level, follow the $1 / 2$ matrix horizontally on test 29.
H. Circle the starting intensity, in vibration units, on the left hand column of the examination form. The location of the stimulus (9 or 2 rod) is indicated by the first column in the $1 / 2$ matrix.
I. If the participant is correct on the first trial at an intensity level, go straight down one row to the next intensity (approximately 10% less) for the next trial. Continue this process until the first error occurs.
J. When the participant makes her first error, repeat the identical intensity twice, for a total of three trials at that level. For these trials at the same intensity level, follow the $1 / 2$ matrix horizontally.

1. If the trial of the stimulus is correctly identified on two of the three trials, follow the $1 / 2$ matrix down diagonally. from the last $1 / 2$ position tested to the adjacent $1 / 2$ position at the next lower intensity level (below and one to the right).
2. If errors are made on two of the three trials, follow the $1 / 2$ matrix up diagonally from the last $1 / 2$ position tested to the $1 / 2$ position at the next higher intensity level (immediately above and one to the right).
3. If errors are made at two successive settings ($1 / 2$ setting) at a given level, the third stimulus is not necessary. Follow the matrix up diagonally at that point.
K. Repeat all levels below 1.0 units twice, even if the participant selected the correct stimulus position on the first trial.
L. Testing is completed when the participant has made a total of five errors. A single error often appears early in the testing sequence.

Comments:

\qquad
\qquad
$\square 1$ valid test $\quad \square 2$ invalid test $\quad \square 7$ refused $\quad \square 8$ unable to test (e.g., toes missing) \quad Specify: \qquad Toes cold to touch.

Vibration intensity CIRCLE IF CORRECT. CROSS OUT IF INCORRECT. STOP AT 5 ERRORS.

22.4	1	1	2	1	1	2	1	2	1	1	1	1	2	1	2	2
22.0	2	1	1	2	1	1	2	2	2	1	1	2	2	1	2	1
20.0	2	2	1	2	1	2	1	1	2	1	2	2	2	2	2	1
18.0	1	1	2	2	2	2	1	1	2	1	2	1	2	1	1	2
16.2	1	2	1	1	2	1	2	1	2	2	1	2	1	2	2	2
14.6	1	2	1	1	2	1	2	1	2	2	2	1	2	1	1	1
13.1	2	2	1	2	2	1	1	2	1	2	1	2	2	2	2	2
11.8	2	2	1	2	1	1	1	2	2	1	2	2	2	2	1	2
10.6	1	2	2	1	1	2	2	2	1	1	1	2	2	1	2	1
9.5	2	2	1	1	2	1	1	2	2	1	2	2	1	2	2	2
8.6	1	1	1	2	2	2	2	1	1	2	2	2	1	2	1	2
7.7	1	1	2	1	1	2	2	1	2	2	2	2	1	1	1	1
6.9	2	2	1	1	2	2	1	1	1	1	2	1	2	1	1	2
6.2	1	2	1	1	1	2	2	2	1	1	1	2	2	1	2	2
5.6	2	2	2	2	2	1	1	1	2	2	2	2	1	1	1	2
5.0	2	2	1	2	2	2	2	1	1	2	1	1	1	1	2	1
4.5	1	1	1	2	1	1	1	2	1	1	1	2	2	2	1	1
4.1	1	1	1	1	1	2	2	1	2	2	2	2	1	1	1	1
3.7	1	1	2	1	1	2	2	1	1	2	2	2	2	1	1	1
3.3	1	1	1	2	2	1	1	2	2	2	2	1	1	2	1	1
3.0	2	2	1	2	1	2	1	2	1	1	2	2	2	2	2	1
2.7	1	1	2	1	2	2	1	1	2	1	2	1	2	1	1	2
2.4	2	1	1	2	1	1	2	2	1	2	1	2	2	1	2	1
2.2	2	2	1	2	1	2	1	2	1	1	2	2	1	2	2	1
2.0	1	1	2	2	2	2	1	1	2	1	2	1	2	1	1	2
1.8	1	2	1	1	2	1	2	1	2	2	1	2	1	2	2	2
1.6	1	2	1	1	2	1	2	1	2	2	2	1	2	1	1	1
1.4	2	1	1	2	1	1	2	2	1	2	1	2	2	1	2	1
1.2	2	2	1	2	1	2	1	2	1	1	2	2	1	2	2	1
1.1	1	1	2	2	2	2	1	1	2	1	2	1	2	1	1	2
0.9	1	2	1	1	2	1	2	1	2	2	1	2	1	2	2	2
0.8	1	2	1	1	2	1	2	1	2	2	2	1	2	1	1	1

1S errors 2 2 4 5

5 lowest correct
$1 \ldots$
2
4

30. SITTING CHAIR STEP TEST - EXCLUSION CRITERIA

A. Prior to visit, check interview data form for potential exclusions:
History of aortic stenosis .. $\quad \square$
History of myocardial infarction within last 6 months
History of unstable angina or angina at rest ..

If positive, requestion participant at time of visit.
If no exclusions, calculate the Maximum Predicted Heant Rate
B. At time of visit, assess participant for following exclusions:

Bedridden
Chairbound
Acute infection (i.e., respiratory, urinary, etc.)
Unstable angina or angina at rest

C. At exam, evaluate participant for:

Loud systolic murmur suggestive of aortic stenosis $\square 09$
Acute congestive heart failure: bilateral rales (more than basilar) $\square 10$
Shortness of breath at rest ...
Resting diastolic blood pressure $>110 \mathrm{mmHg}$ or resting
systolic blood pressure $>200 \mathrm{mmHg}$.. 12
Severe weaknes in

Severe weakness in one or both legs $<4 / 5$ on manual exam $\square 13$
Heart rate is greater than 75\% of MPHR ... \square
D. Evaluate ECG for:

Atrial fibrillation ... 15
Atrial flutter ... $\quad 16$
Wolf-Parkinson White (WPW) or ventricular pre-excrition $\square 17$

Idioventricular shythm/complete heart block .. \square
Ventricular tachycardia or frequent PVC's (3 or more in
30 sec in the resting rhythm strip) ...
Acute pericarditis .. 21
Any reference to acute injury, ischemia or myocardial infarction.............. $\quad 22$
Heart rate at rest (ventricular rate) $\leq 45 / \mathrm{min}$ or $\geq 120 / \mathrm{min}$. \square
E. Evaluate rhythm strip for:

Ventricular arrhythmias: ≥ 3 PVC's per 30 seconds
(distinguish from PAC's) .. \square

IF PARTICIPANT IS EXCLUDED, GO TO CLOSING, PAGE 52.
A. Participant should be in a hard, straight-backed chair, preferably wooden, and one in which she can touch her feet to the floor. Make sure that chair cannot slide back easily.
B. Attach the universal test cable to the MAC PC and run a rhythm strip check the "RS" box on the grid "at start." Remove Holter from participant's shoulder and place on floor or hang on chair.
C. Tape the oximeter finger probe on the left forefinger. If the O_{2} saturation is ≤ 80, or heart rate is greater than 75% of predicted maximum, do not do the test.
D. Record the resting heart rate and the O_{2} saturation on the "at start" line on the grid.
E. Replace the blood pressure cuff on the right arm and take a "quick" right brachial auscultatory blood pressure. Record on the "at start" line of the grid.
F. Next we have a test which will help us understand your level of fitness. This test is considered safe for someone in your situation.
G. Demonstrate test with 6 " step, using the metronome set for one-second beats.
H. Do you see any reason why you could not perform this test?
YES .. $\square 1$ (RECORD REASON AND
NO .. 2 GO TO CLOSING)

IF YES: Reason \qquad
I. Give the Rating of Perceived Exertion Scale card to the participant.
J. During this exercise test, we want you to pay close attention to how hard you feel the work is. This feeling should reflect your total amount of exertion and fatigue, combining all sensations and feelings of physical stress, effort, and fatigue. In giving me this score, don't concern yourself with any one factor such as leg pain, shortness of breath, or exercise intensity, but try to concentrate on your total inner feeling of exertion. Don't underestimate or overestimate, just be as accurate as you can.
K. What would you say your overall feeling of exertion is right now?
L. Record in the "RPE" box on the "at start" line.
M. If you need to stop this test, you may stop. If you have any feelings of chest pain or excessive shortness of breath or fatigue, please tell me.
O. Set the metronome for one-second beats. Start the metronome.
O. STAGE 1: Use the 6° step. Place the 10 -lb. weight on the step to stabilize it. Place the step so that the participant's ankle resis on the edge of the step when her leg is fully extended.
P. When the participant begins to step on the step, start the stopwatch and simultaneously push the marker on the Hoter Monitor.
Q. At 2 minutes: (start at 1 minute and 45 seconds)

- Record the heart rate and O_{2} saturation
- Run a 30-second rhythm strip; observe for ST-T changes or \uparrow ventricular premature beats
- Obtain and read a "quick" right brachial auscultatory blood pressure; evaluate for siepping criteria
R. Stop the test if conditions listed on bottom of next page exist. If persons says they are tiring out or complains of other symtoms, ask: Do you think you can continue for another minute?*
S. If the participant can complete the 2 -minute without an endpoint being reached, continue at the same level for 1 more minute.
T. Ai the 3 -minute interval, stop the stopwatch and record the heart rate and O_{2} saturation and RPE. Clear the stopwatch to ZERO.
U. Are you having any chest pain, dizziness, lightheadedness, or shortness of breath?
V. IF YES: RECORD UNDER SYMPTOMS AND STOP TEST.
W. If the participant can complete the 3-minute interval without symptoms, ask if she is willing io go on.
X. STAGE 2: Using the 12° step, repeat the protocol for Stage 1. Place the 6° step inside the 12° step and clip them together.
Y. STAGE 3: Using the 18° step, repeat the protocol for Stage 1.
Z. STAGE 4: The participant again uses the 18° step, but places her hands on her knees palms down. As her foot is moved to the step, her hand on the same side of the body is raised to shoulder level and extended over her leg. As her foot returns to the floor, her hand is returned to the knee. Demonstrate this procedure. Then repeat the protocol for Siage 1.

AA. Whenever a test end point is reached, press the Hoter Marker and record the time.
BB. Start the stopwatch to measure time for heart rate and O_{2} saturation to reach normal range.
CC. Record the Borg RPE score.

DD. Record the heart rate.
EE. Record the O_{2} saturation.
FF. Run a 30-second rhythm strip.
GG. Obtain and record a "quick" right brachial auscultatory blood pressure.
HH. Leave the oximeter in place until the heart rate and O_{2} saturation refurns to the participant's baseline. Record the number of minutes lapsed for the heart rate and O_{2} saiuration to return to a normal range.
II. Ask participant how she feels. Tell her she did a great job and get her some water or juice if she would like it.
30. SITTING CHAIR STEP TEST (continued)
B. $\quad 75 \%$ MPHR: $(220-\underset{\text { age }}{ }) \times 0.75=$ \square $\square \square \square$

	HR	$\mathrm{O}_{2} \%$	RS	BP	RPE	Symptoms
AT START						
\.						
Stage 1 (6") (2 min.)						
(3 min.)						
Stage 2 (12") (2 min.)						
(3 min.)						
Stage 3 (18") (2 min.)						
(3 min.)						\% ${ }_{\text {a }}$
Stage 4 (18") (2 min.)						
with arm raised (3 min.)						

Code all that apply:
1-SOB
2 - Chest pain
3-Dizziness
4- Leg pain
5-Excessive fatigue

AT END POINT:

Stop the test if:

1. participant says she has chest pain, OR
2. participant says she is feeling lightheaded or dizzy, OR
3. participant says she is (or appears to be) short of breath
4. blood pressure is > 200 systolic or >110 diastolic or <90 systolic or < 60 diastolic
5. O_{2} saturation ≤ 80
6. heart rate is greater than 75% of predicted maximum
7. Borg scale rating is 8 or higher
8. participant says she cannot go on
9. ECG: PVC's $>3 / 30$ seconds
10. ECG: wide QRS (> 3 mm)
11. ST $\downarrow 2 \mathrm{~mm}$ past end of QRS, exceeding 1 mm with respect to $P R$ baseline
12. $S T \downarrow$ present @ rest
13. Other (SPECIFY)

Appendix E

Disease Ascertainment Algorithms

Linda P. Fried, Judith D. Kasper, Jeff D. Williamson, Elizabeth A. Skinner, Carol D. Morris, Marc C. Hochberg for the Disease Ascertainment Working Group*

Abstract

To evaluate the relationship of individual chronic diseases and disability, it was essential to ascertain the presence of each of the major chronic diseases and conditions in a uniform and rigorous manner. To accomplish this, state-of-the-art clinical and epidemiological criteria for determining the presence of diseases were selected. For certain diseases (e.g., rheumatoid arthritis and osteoarthritis), decision trees were available with explicit criteria for disease presence as well as level of certainty. For other diseases, the Disease Ascertainment Working Group developed decision algorithms that would use the data collected in the Women's Health and Aging Study (WHAS).

Abstract

Algorithms are presented on the following pages for the 17 major chronic diseases and conditions ascertained in the WHAS (Figures E.1-E.17). The algorithms start with data from the baseline interview, the nurse's examination, and the participant's current medication list. For certain diseases, these data were insufficient and additional information was used to validate the presence of a disease. For a few diseases, additional evaluations, including radiographs of the hips or knees and blood tests (e.g., glycohemoglobin level for diabetes mellitus) were used to determine presence of disease. For many conditions, responses by the participant's primary care physician to a questionnaire were used to confirm the diagnoses (Appendix F). Surveillance procedures were used to obtain hospital or outpatient records when other data were not sufficient, and these were then reviewed by WHAS clinician-epidemiologist investigators to confirm the presence of disease (Appendix F).

A study was performed to evaluate the reliability of disease ascertainment algorithms. For each disease, participants' records were reviewed first by a medical abstractor using the disease algorithms. For each disease, 15 to 20 charts to be reviewed were chosen at random from three categories of disease (definite disease, possible disease, and no disease) by the medical records abstractor, based on the abstractor's initial classification. Three WHAS clinician-epidemiologists then independently applied the relevant data to the algorithm and classified the participants according to

[^11]disease status. Kappa values were calculated to assess inter-rater reliability for each algorithm, and results for the 15 algorithms tested are shown in Table E.1. Where raters disagreed, the algorithms were modified appropriately and retested, resulting in complete agreement as to disease presence. Because of time constraints, algorithms for peripheral arterial disease (Figure E.4), and cancer (Figure E.17) had not been tested as of the time of publication.

Table E.1: Inter-Rater Reliability of Disease Algorithms

Number of cases reviewed

Chronic disease	Kappa	Classification by first reviewer		
		Definite disease	Possible disease	No disease
Angina pectoris	1.00	7	5	5
Myocardial infarction	1.00	5	5^{1}	5
Congestive heart failure	1.00	5	5	5
Hip fracture	1.00	5	0	5
Osteoporosis	1.00	5	5	5
Osteoarthritis of the knee	1.00	10^{*}	0	5
Osteoarthritis of the hip	0.93	10^{2}	5	5
Osteoarthritis of the hand	1.00	10^{2}	5	5
Rheumatoid arthritis	0.90	5	5	5
Degenerative disc disease	1.00	5	5	5
Spinal stenosis	1.00	5	5	5
Stroke	1.00	1	5	5
Parkinson`s disease	0.80	5	0	5
Pulmonary disease	0.93	13^{3}	3	5
Diabetes mellitus	0.80	5	5	5

[^12]
How to read the algorithms

Each algorithm traces the decision pathways in the explicit criteria for disease presence and level of certainty. The data elements and their sources are specified, indicated in the algorithms as follows:

Boldface type: These elements come from the participant, either from the screener or baseline questionnaire (Appendix B). The question number is usually presented in the box and the required response or value indicated in the pathway.

Double outlined box: These elements come from the nurse's examination (Appendix D) or additional evaluations such as blood tests and hip and knee radiographs (Appendix F).

Italics: These elements come from surveillance, including the physician questionnaire (" $M D$ Questionnaire") and medical record abstraction (Appendix F). Question numbers appearing in the surveillance boxes refer to items in the baseline questionnaire that asked the participant to name a doctor or hospital where a diagnosis was made or treatment was received.

Medications box: If medication use was considered in the algorithm, the medications of interest are specified separately in a box.

References: Algorithms that were derived from existing criteria are referenced on the algorithm, with the full citations given below.

Abbreviations:

DK: The source (e.g., the participant or physician) does not know whether something occurred or had been diagnosed.

NA, Not Avail: The item could not be located, for example the record could not be found or the physician questionnaire was not completed.

References Cited in Algorithms

Acheson RM, Collart AB, Greenberg RH, Clemett AR. (1969). New Haven Survey of Joint Disease: Photograph and other variables in screening for arthritis of the hands. Am J Epidemiol 90:224-235.

Altman RD. (1991). Classification of disease: Osteoarthritis. Sem Arthritis Rheum 20(Suppl. 2):40-47.
Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315-324.

Cardiovascular Health Study. (1990). Manual of Operations. Vol. 1 protocol. CHS Coordinating Center, University of Washington, JD-30, 1107 NE 45th Street, Suite 530, Seattle, WA 98105.

Ferris BG Jr. (1978). Epidemiology Standardization Project (American Thoracic Society). Am Rev Respir Dis 118(Suppl.):1-120.

National Center for Health Statistics. (1994). Plan and operation of the Third National Health and Nutrition Examination Survey, 1988-94. Vital Health Stat, series 1, no. 32.

Rose G. (1962). The diagnosis of ischaemic heart pain and intermittent claudication in field surveys. Bull WHO 27:645-658.

Figure E.1: PREVALENT AND INCIDENT ANGINA

Figure E.2: PREVALENT MYOCARDIAL INFARCTION

Figure E.3: PREVALENT CONGESTIVE HEART FAILURE

Figure E.4: PREVALENT PERIPHERAL ARTERIAL DISEASE

Figure E.5: HIP FRACTURES

Figure E.6: PREVALENT OSTEOPOROSIS

Figure E.7: PREVALENT SYMPTOMATIC OSTEOARTHRITIS OF HANDS

Figure E.8: PREVALENT SYMPTOMATIC OSTEOARTHRITIS OF KNEES

NHANES

Altman, Semin Arthritis Rheum 1991

Figure E.9: PREVALENT SYMPTOMATIC OSTEOARTHRITIS OF HIPS

Hip radiograph scoring:
(Femoral osteophytes scored 1,2 or 3) AND
(Medial narrowing OR superior narrowing scored 1,2 or 3)
These must occur on the same side.

* MD questionnaire takes precedence, recognizing that subjects could have developed OA since surveillance
x -ray was obtained.
Reference:
NHANES
Altman, Semin Arthritis Rheu, 1991

Figure E.10: PREVALENT RHEUMATOID ARTHRITIS

Figure E.11: PREVALENT DISC DISEASE

* Passive surveillance may change this to Definite Disc Disease.

Figure E.12: PREVALENT SPINAL STENOSIS

Figure E.13: PREVALENT STROKE

Reference: Cardiovascular Health Study
Figure E.14: PARKINSON'S DISEASE

- Passive surveillance may change this to
Figure E.15: PREVALENT DIABETES MELLITUS

Figure E.16: PULMONARY DISEASE (Page 2 of 2)

Figure E.17: PREVALENT CANCER

* Passive surveillance may change this to Definite Cancer

Appendix F

Miscellaneous Forms

Disease surveillance forms mailed to physicians F-1
Medical record abstract form F-3
Medical record abstract instructions F-8
Knee and hip X-ray reading forms F-15
Hand photograph scoring form F-17

PHYSICIAN QUESTIONNAIRE

Patient name

\qquad Birthdate \qquad ID No. \qquad

Physicianname: \qquad

1. Are you the primary care physician for this patient? \square No \square Yes
2. What is your specialty? \qquad
3. Please indicate on the scale how you would classify this patient with regard to frailty:

Very Frail				st/Hardy Don't Know			
	To your knowledge, does this patient have this condition now?			If the condition is present, how severe is it? $1=$ Mild $2=$ Moderate 3 = Severe			What was the date (year) of diagnosis for this condition?
Cancer Specify site: \qquad TNM Classification: \qquad	No	Yes	Don't know	1	2	3	19
Diabetes	No	Yes	Don't know	1	2	3	19
Cardiovascular disease Hypertension Angina Myocardial infarction Congestive heart failure Peripheral vascular disease	No No No No No	Yes Yes Yes Yes Yes	Don't know Don't know Don't know Don't know Don't know	$\begin{gathered} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 19 \\ & 19 \\ & 19 \\ & 19 \\ & 19 \end{aligned}$
Pulmonary Disease COPD (chronic bronchitis, emphysema) Asthma Other pulmonary disease (specify):	No No No	Yes Yes Yes	Don't know Don't know Don't know	1 1 1	2 2 2	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	19 \qquad 19 \qquad 19 \qquad

	To your knowledge, does this patient have this condition now?			If the condition is present, how severe is it? $1=$ Mild 2 = Moderate 3 = Severe			What was the date (year) of diagnosis for this condition?
Musculoskeletal disease							
Rheumatoid arthritis	No	Yes	Don't know	1	2	3	19
Osteoarthritis of hips	No	Yes	Don't know	1	2	3	19
Osteoarthritis of knees	No	Yes	Don't know	1	2	3	19
Osteoarthritis of hands	No	Yes	Don't know	1	2	3	19
Osteoporosis	No	Yes	Don't know	1	2	3	19
Fracture of hip	No	Yes	Don't know				
Fracture of upper or lower extremity	No	Yes	Don't know				19
Vertebral compression fracture	No	Yes	Don't know	1	2	3	19
Degenerated, slipped or herniated disc	No	Yes	Don't know	1	2	3	19
Spinal stenosis	No	Yes	Don't know	1	2	3	19
Neurologic Disorders							
Stroke	No	Yes	Don't know	1	2	3	19
Parkinson's Disease	No	Yes	Don't know	1	2	3	19
Peripheral neuropathy	No	Yes	Don't know	1	2	3	19
Other significant disease (Please list)				1	2	3	
				1	2	3	19
				1	2	3	19
				1	2	3	19
				1	2	3	19
				1	2	3	

Please return to: Women's Health \& Aging Study The Johns Hopkins Medical Institutions
2024 E. Monument, Suite 2-600
Baltimore, Maryland 21205

Phone: 550-5495
Fax: 614-9225

WOMEN'S HEALTH AND AGING STUDY MEDICAL RECORD ABSTRACT

Hospital:
(4) Name:

Address:
Code:
(5) Attending MD:

Reason Abstract not completed: \qquad
\qquad
(7) When no H\&P, D/S describe acute events/sx's leading to admission include time sequence and course of out-ofhospital symptoms - use comment section.
(8) Diagnostic codes

(10) Procedure codes

(9) Description
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(11) Description
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Description \qquad
(13) Adm. Dx: code \qquad No
(16) Therapies/Procedures

Sepsis/Septic shock	Y	N	DK
Pneumonia/Pneumonitis	Y	N	DK
Urinary Tract Infection	Y	N	DK
Decubitus ulcers	Y	N	DK
Deep Vein Thrombosis	Y	N	DK
Pulmonary Embolus	Y	N	DK
Upper GI Bleed	Y	N	DK
Lower Gl Bleed	Y	N	DK
Fall in Hospital	Y	N	DK
Injury in Hospital	Y	N	DK
Delirium	Y	N	DK
Stroke	Y	N	DK

Surgical Complications

DK
DK
K
DK
DK
DK
DK

DK
DK
DK
DK

Heparin	Y	N	DK
Coumadin	Y	N	DK
IV Pressors	Y	N	DK
IV Vasodilators	Y	N	DK
IV Antiarrhythm	Y	N	DK
Swan Ganz	Y	N	DK
Intubation/Vent	Y	N	DK
Foley Cath	Y	N	DK
Radiation Tx	Y	N	DK
Chemotherapy	Y	N	DK

(17) Closed Chest massage \quad Y $N \quad$ DK (18) Cardioverted \quad Y \quad DK
(19) Rhythm(s) present prior to cardioversion \qquad
(20) Past medical history

MI Date___	Y	N	DK	Angina/IHD	Y	N	DK
Valvular Dis	Y	N	DK	CHF	Y	N	DK
At Fib/Flutter	Y	N	DK	Vent Tach	Y	N	DK
CVA Date_	Y	N	DK	TIA	Y	N	DK
Syncope	Y	N	DK	Claudication	Y	N	DK
LE bypass/Amp	Y	N	DK	CABG	Y	N	DK
CP Resus	Y	N	DK	Cardiac Arrest	Y	N	DK
Thrombolytic Tx	Y	N	DK	CA Site___	Y	N	DK
Fall	Y	N	DK	Injuries	Y	N	DK
Fx hip	Y	N	DK	Other FX > 50	Y	N	DK
CRF	Y	N	DK	Hypothyroidism	Y	N	DK
Spinal stenosis	Y	N	DK	Emphysema	Y	N	DK
Rheum Arthritis	Y	N	DK	DM retinopathy	Y	N	DK
Retinal Hemmor	Y	N	DK	Blindness/DM	Y	N	DK
Laser Tx retina	Y	N	DK	Parkinson Dis	Y	N	DK
Osteoporosis	Y	N	DK	Diabetes	Y	N	DK

Death

(21) Deceased Yes N
(23) Time period prior to death pain free
(24) Episode of C.P. within 72 hr of death
(25) After development of C.P., pt died
(26) Terminal complication non C-V Disease
(22) Found dead

Time period \qquad
Yes No DK Comatose
Time Period \qquad
Yes No DK

Acute Cardiovascular Events

(27) Episode of pain	Yes	No	DK	(28) Onset prior to Adm	Yes	No	DK
(29) Given nitrates/NTG	Yes	No	DK	(30) Pain relieved	Yes	No	DK

(31) Pain return Yes No DK (32) Record date
(33) Any episode within 6 wks. PTA last > 20 minutes
Yes No

DK
(34) Most recent Episode > 20 min :

Date \qquad Time \qquad Duration \qquad
(35) Duration of longest episode \qquad

CHF
(36) Adm w/CHF or developed during Adm

Yes No DK
(37) Sx's PTA or during stay:

Night cough	Y	N	DK	Productive cough	Y	N	DK
Dyspnea at rest	Y	N	DK	Dyspnea mild/mod exert	Y	N	DK
Dyspnea extreme	Y	N	DK	PND	Y	N	DK
Orthopnea	Y	N	DK	SOB NOS	Y	N	DK

(38) Physician reported condition:

Neck:	Neck vein distention/JVD	Yes	No	DK
	Carotid bruit	Yes	No	DK
Lung:	Basilar rales/crackles only	Yes	No	DK
	Rales/crackles above bases	Yes	No	DK
	Wheezing	Yes	No	DK
Cardiac:	S-3 gallop	Yes	No	DK
	Murmur	Yes	No	DK
Abdominal:	Hepatojugular reflux	Yes	No	DK
	Hepatomegaly	Yes	No	DK
Extremities:	Peripheral/ankle edema	Yes	No	DK

(39\&40) On Admission: Blood Pressure \qquad Heart Rate \qquad
(41) Meds during 1 st 48 hrs of Adm or Dx:

Diuretics	Yes	No	DK	Digitalis	Yes	No	DK
Oxygen	Yes	No	DK	Nitroglycerine	Yes	No	Dk
ACE inhibitor	Yes	No	DK		Other Vasodilators		

Chest X-ray

(42) Chest xray taken Yes No DK
(43) 1st CXR following Adm. or Dx of CHF findings:

Pulmonary edema	Yes	No	DK	CHF	Yes	No	DK
Pleural effusion	Yes	No	DK	Cardiomegaly	Yes	No	DK
Metastasis	Yes	No	DK	Compression fx	Yes	No	DK
Flow redistribution	Yes	No	DK	Atelectasis	Yes	No	DK
COPD	Yes	No	DK	Pneumonia	Yes	No	DK

Electrocardiogram
(44) Electrocardiogram recorded Yes No DK

Serum Enzymes
(45) Cardiac Enzymes performed Yes No DK
(46) Total CK w/in 72 hr of $\mathrm{Adm} / \mathrm{Sx}$ Yes No DK
(47) CK-MB w/in 72 hr of $\mathrm{Adm} / \mathrm{Sx}$ Yes No DK
(48) LDH w/in 72 hr of Adm/Sx Yes No DK
(49) Active liver disease Ves No DK
(50) Trauma during 7d PTA
(51) Surg. Proc. of muscle cutting/GA
Yes No DK

DK Specify \qquad
Angina
(52) Stress test performed
(53) Angiography performed

Yes N
DK Attach copy
Yes No DK Attach copy
Spinal Stenosis/Disc Disease
(54) CT/MRI performed

Yes No DK Attach copy
Spirometry
(55) Spirometry performed

Yes No
DK Attach copy
Cancer
(56) Dx of Cancer
(58) Stage of Disease @ D/C
(59) Path report

Yes No DK

Yes No DK Attach copy

Back Disorder

(60) Adm w/ disc disease, sciatica, Spinal Stenosis	Yes	No	DK	
(61) L-Spine xray	Yes	No	DK	Attach copy
(62) CT Spine	Yes	No	DK	Attach copy
(63) MRI Spine	Yes	No	DK	Attach copy
(64) Surgical Procedure	Yes	No	DK	Attach op note

Stroke

(57\&65) Post Discharge Follow-Up MD
(66) Medications @ D/C
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Comments:
\qquad

Abstractor \qquad
Date \qquad

ELEMENT

12. Further abstraction required
13. Admitting Diagnosis
14. Was the patient treated in any Intensive Care Unit during this hospitalization
15. During this hospitalization did the patient develop any of the following complications
16. During this hospitalization did the patient receive any of the following therapies/procedures
17. Was closed Chest Massage administered
18. Was cardioversion given
19. What rhythm(s) were present prior to conversion

INSTRUCTION

12. A. Cardiac Disease: ICD-9-CM Codes 410, 411, 413 , $414,425,427.4,427.5,428$
B. Stroke/TIA: ICD-9-CM Codes 430, 431, 432, 433, $434,435,436,437,438$
C. Cancer: ICD-9-CM Codes 140 through 239
D. Back Disorder: ICD-9-CM Codes 721, 722, 724
13. ICD-9-CM Code and Description
14. Yes/No; Number of Days
15. Diagnosis of complications must have occurred at least 24 hours after admission:
Sepsis/septic shock
Urinary Tract Infection
Deep Vein Thrombosis
Upper GI Bleed
Fall/Injury in Hospital
Delirium
Pneumonia/pneumonitis
Decubitus Ulcers Pulmonary Embolus Lower GI Bleed Stroke
Surgical Complications
16. Heparin (except to keep IV line open)

Coumadin (Warfarin)
IV Pressors
IV Vasodilators
IV Antiarrhythmics
Swan Ganz Catheter for hemodynamic monitoring
Intubation/Mechanical Ventilation
Indwelling Foley Catheter
Radiation Therapy
Chemotherapy
17. Yes/No
18. Yes/No; If no or DK Skip to 0.20
19. Ventricular Fibrillation/Flutter

Atrial Fibrillation/Flutter
Ventricular Tachycardia
Asystole
Complete AV Block (3 HB)
Other, Specify
Unknown/not documented

ELEMENT

20. Is there a past medical history of the following conditions/procedures/medications prior to admission

DEATHS

21. What was the patient's vital status at discharge
22. Was the patient found dead
23. What was the shortest period of time prior to death that participant was observed to be free from chest, left arm or jaw pain
24. Was there an episode of chest, left arm or jaw pain during the 72 hours prior to death

INSTRUCTION

20. Myocardial Infarction (include date of most recent) Angina Pectoris, Coronary Insufficiency, or other Chronic Ischemic Heart Disease
CHF or Congestive Cardiomyopathy
Atrial Fibrillation/Flutter
Ventricular Tachycardia
Stroke (CVA) include date of most recent TIA
Syncope
Intermittent claudication or other Peripheral Vascular Disease
Lower extremity bypass, angioplasty or amputation secondary to Peripheral Vascular Disease
Coronary Bypass Surgery
Cardiopulmonary Resuscitation
Cardiac Arrest
Thrombolytic Therapy
Cancer include site
Fall/Injuries other than fracture
Fracture of the Hip
Other fracture after age 50, include site
Chronic Renal Failure
Hypothyroidism
Spinal Stenosis
Emphysema/COPD
Rheumatoid Arthritis
Proliferative Diabetic Retinopathy
Retinal Hemorrhage
Diabetes/Blindness/Visual Impairment due to Diabetic Eye Disease
Photocoagulation (Laser) treatment of retina
Parkinson Disease
Osteoporosis
21. Alive Skip to Q. 27/Dead
22. i.e., not observed at the moment of death. If expired in ICU/CCU, code No. If No/DK Skip to Q. 24
23. Time periods: Less than 5 minutes

5 minutes to 1 hour
1 to 24 hours after start of symptoms
More than 24 hours
DK/Not stated
24. Yes, No, Comatose, DK/not stated- Skip to 026

ELEMENT

25. Following development of chest, left arm or jaw pain the patient died
26. Did a physician document the death as a terminal complication of a non-cardiovascular disease

ACUTE CARDIOVASCULAR EVENTS

27. Was there an acute episode of pain, discomfort or tightness in the chest, left arm, or jaw
28. Did the onset of the acute episode occur prior to admission
29. Did the participant take or was she given nitrates or nitroglycerine for these symptoms
30. Was the pain relieved by the nitrates
31. Did the pain return
32. Record the date and time of first onset of pain
33. Did any pain episode within the six weeks prior to admission last 20 minutes or longer
34. For the most recent episode that lasted 20 minutes or longer, record the date/time/duration
35. What was the duration of the longest episode

INSTRUCTION

25. Time Periods: Less than 5 minutes after start of symptoms
5 minute to 1 hour after start of symptoms
1 to 24 hours
More than 24 hours after start of symptoms
DK/Not stated
26. Yes/No/DK/not stated
27. Yes

No DK/not stated - Skip to 0.36
28. Yes

No/DK/not stated - Skip to Q. 32
29. Yes

No/DK/not stated - skip to 0.32
30. Yes/No/DK/not stated
31. Yes/No DK/not stated
32. If exact time unknown:

Midnight to 6 AM 6 Am to Noon Noon to 6 PM 6 PM to Midnight DK/not stated
33. Yes

No/DK/not stated-skip to 0. 36
34. If exact time unknown: Midnight to 6 AM 6 Am to Noon Noon to 6 PM 6 PM to Midnight DK/not stated
35. Hours/Minutes

ELEMENT

INSTRUCTION

CONGESTIVE HEART FAILURE (CHF)

36. Was the participant admitted with CHF, or did CHF develop during the hospitalization
37. Did the participant have any of the following symptoms immediately prior to admission, or did the symptoms develop during the hospitalization
38. Did a physician report any of the following conditions
39. Blood pressure at admission
40. Heart rate at admission
41. Did the participant receive any of the following medications during the first 48 hours following hospitalization or diagnosis of CHF

CHEST X-RAY

42. Was a chest x-ray done during this admission
43. On the first chest-X-ray done following admission (or following diagnosis of CHF, were any of the following findings reported
44. Yes

No/DK/not stated - Skip to Q. 42
37. Symptoms: Night Cough

Productive Cough
Dyspnea at rest
Dyspnea on mild/moderate exertion-walking on level
Dyspnea on extreme exertion
Dyspnea Orthopnea-Dyspnea NOS/Shortness of Breath
38. Neck:

Neck vein distention (jugular venous distention/JVD)
Lung: Basilar rales or crackles only Rales or crackles above bases Wheezing
Cardiac: \quad S-3 gallop
Cardiac murmur
Abdominal: Hepatojuglar reflux Hepatomegaly
Extremities: Peripheral/ankle edema
41. Medications: Diuretics

Digitalis
Oxygen
Nitroglycerine
Angiotensin-converting enzyme inhibitor Other Vasodilators specify
42. Yes- Attach copy

No/DK/not stated - Skip to Q. 44
43. Findings: Pulmonary venous congestion or pulmonary edema
Congestive Heart Failure
Pleural Effusion
Cardiomegaly/Cardiothoracic ratio> 0.50
Metastatic lesions/nodules
Vertebral compression fracture
Upper zone flow redistribution
Atelectasis
COPD/Emphysema

ELEMENT

ELECTROCARDIOGRAMS

44. Were EKG's (ECG's) recorded

SERUM ENZYMES

45. Were serum cardiac enzyme measurements performed during admission
46. Was Total CK measured within 72 hours after onset of acute symptoms
47. Was CK-MB-measured within 72 hours after admission or after onset of acute symptoms
48. Was LDH measured within 72 hours after admission or after onset of acute symptoms
49. Did the participant have active liver disease (cirrhosis, hepatitis, liver cancer, etc.)
50. Was there trauma (severe injury) during the 7 days prior to admission
51. Did the participant have any surgical procedure this admission involving muscle cutting and/or general

INSTRUCTION

44. Yes

No/DK/not stated-Skip to O. 45

- If participant was discharged alive and Q. 27 (acute chest pain) $=$ No/DK and Q. $36(\mathrm{CHF})=$ No/Dk, complete Chart A. No copies of ECG's are required.
- When participant was discharged alive and $0.27=$ yes or $\mathrm{Q} .36=$ yes (MI , angina, or CHF), or if participant died during admission, complete Chart A and make 2 copies of ECGs as described below:
- Attach copies of 3 tracings
- If 3 or fewer tracings were made, include all tracings
- If more than 3 tracings were made, include:

1) First codable tracing
2) Last codable tracing prior to discharge or death (discharge tracing)
3) Last codable tracing recorded on day 3 (or first tracing thereafter) following an admission or in-hospital event
NOTE: If only 2 ECG's are obtained using the above criteria, obtain a third by copying the tracing immediately preceding the "discharge tracing"

- If the participant is readmitted (transferred) to ICU/CCU because of a new episode of chest pain, also copy the first codable tracing recorded after transfer
- Make 2 copies of each ECG specified above

45. Yes-Complete Chart B. No/DK/not stated -Skip to 0.50
46. Yes/No/DK/not stated
47. Yes/No/DK/not stated
48. Yes/No/DK/not stated
49. Yes -Specify No/DK/not stated
50. Yes-Specify No/DK/not stated
51. Yes-Specify Date/Procedure

No/DK/not stated

ELEMENT

ANGINA

52. Was a stress test done
53. Was angiography performed

SPINAL STENOSIS/DISC DISEASE

54. Was a CT scan or MRI of the lumbar spine performed

SPIROMETRY

55. Was spirometry (PFT) performed

CANCER

56. Was there a diagnosis of cancer
57. Post discharge follow-up care source
58. Stage of disease at discharge
59. Photocopies of pathology report

BACK DISORDER

60. Was participant admitted with either intervertebral disc disease, sciatica, or spinal stenosis
61. Was a lumber spine x-ray done during this admission
62. Was a CT scan done during this admission
63. Was a MRI scan done during this admission
64. Did the patient have a surgical procedure on her back during this admission

INSTRUCTION

52. Yes-Attach copy No/Unknown/not stated
53. Yes-Attach copy No/Unknown/not stated
54. Yes-Specify CT or MRI; Attach copy No/Unknown/not stated
55. Yes-Attach copy No/Unknown/not stated
56. Yes/No
57. Yes-Number of reports No-explain
58. Yes/No
59. Yes-Attach copy No
60. Yes-Attach copy

No
63. Yes-Attach copy

No
64. Yes-Attach copy No

Date film taken \qquad 1 \qquad I_

Osteoarthritis Grading Sheet
KNEE X-RAY

	RIGHT KNEE				LEFT KNEE				
Kellgren-Lawrence		12	3			1	2	34	
Osteophytes									
Medial		12	3	9		1	2		
Lateral		1	3	9		1	2		
Narrowing									
Medial		12	3	9	0	1	2		
Lateral		12	3	9		1	2		
Sclerosis									
Medial		1		9		1			9
Lateral		1		9		1			9
Tibial spines sharpening		1		9		1			9
Chondrocalcinosis		1		9		1			9
Varus Valgus				9					9
				9					9
Old trauma	0	1		9	0	1			9

Comments: \qquad
\qquad
\qquad
Reader's initials \qquad
Date read \qquad
\qquad
Date film taken \qquad 1 \qquad 1 \qquad

Osteoarthritis Grading Sheet

HIP X-RAY

Comments: \qquad
\qquad
\qquad

Reader's initials \qquad
Date read \qquad

Participant ID \qquad

Rater ID \qquad

Date read

CODES：

$$
\begin{aligned}
& 0=\text { Absent } \\
& 1=\text { Present } \\
& 8=\text { Amputated joint } \\
& 9=\text { Unreadable }
\end{aligned}
$$

If normal hand（box checked at bottom，chart does not have to be filled in．If any abnormalities，fill in all of chart．

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{3}{|c|}{LEFT HAND} \& \multicolumn{3}{|c|}{RIGHT HAND} \\
\hline \& \& Soft tissue \& Bony prom \& Deform－ ity \& Soft tissue \& Bony prom \& Deform－ ity \\
\hline \multirow[t]{3}{*}{Thumb} \& IP \& \& \& \& \& \& \\
\hline \& MCP \& \& \& \& \& \& \\
\hline \& CMC \& \& \& \& ぞム \& \& \\
\hline \multirow[t]{3}{*}{2nd} \& DIP \& \& \& \& \& \& \\
\hline \& PIP \& \& \& \& \& \& \\
\hline \& MCP \& \& \& \& \& 【． \& \\
\hline \multirow[t]{3}{*}{3rd} \& DIP \& \& \& \& \& \& \\
\hline \& PIP \& \& \& \& \& \& \\
\hline \& MCP \& \& \& \& \& \％ \& \\
\hline \multirow[t]{3}{*}{4th} \& DIP \& \& \& \& \& \& \\
\hline \& PIP \& \& \& \& \& \& \\
\hline \& MCP \& \& \& \& \& 【．．．．．．．． \& \\
\hline \multirow[t]{3}{*}{5th} \& DIP \& \& \& \& \& \& \\
\hline \& PIP \& \& \& \& \& \& \\
\hline \& MCP \& \& \& \& \& \& \\
\hline \multicolumn{2}{|l|}{Wrist} \& \& \& \& \& \& \\
\hline \multicolumn{2}{|l|}{Total number of abnormal joints} \& \& \& \& \& \& \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Diagnosis： \\
Circle code： \\
If other diagnosis， write in：
\end{tabular}} \& \[
\] \& Present

1
1 \& an＇t tell

9

9 \& \& | Present |
| :--- |
| 1 |
| 1 | \& \[

$$
\begin{gathered}
\text { an't tell } \\
9 \\
9
\end{gathered}
$$
\]

\hline \multicolumn{2}{|l|}{NORMAL HAND} \& \multicolumn{3}{|c|}{\square} \& \& \square \&

\hline
\end{tabular}

ISBN 0-16-048390-5

U.S. Department of

Hfalth and Human Sfritefs
Plbiac: Health Seritcif.
National Institetes of Health

National Institute on Aging

NIH Publication No. 95-4009

[^0]: ${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
 ${ }^{2}$ Descriptive statistics are based on weighted data.
 ${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).

[^1]: (Women's Health and Aging Study, baseline interview, 1992-1995)
 ${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
 ${ }^{2}$ Descriptive statistics are based on weighted data.
 ${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
 ${ }^{4}$ How many times have you seen a doctor in his or her office or a clinic or at your home?

[^2]: ${ }^{1}$ With the following exceptions all variables have less than 1% missing data: number of physical therapist visits, 3.6%; number of occupational therapist visits, 5.3%; number of visiting nurse, home health arde, or nurse's aide visits, 6.7%. Results are based on non-missing data.
 ${ }^{2}$ Descriptive statistics are based on weighted data.
 ${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
 ${ }^{4}$ The question is in the form "In the last 6 months, have you seen a(an) . . . ?"
 ${ }^{5}$ How many times have you seen a (an) [service provider]?
 ${ }^{6}$ How many times have you discussed any personal problems with a psychiatrist, a psychologist, or any other mental health professional?
 ${ }^{7}$ The question is in the form "In the last 6 months, have you received nursing services at home from someone such as a . . . ?"
 ${ }^{8}$ How many times have you received nursing services at home from someone such as a visiting nurse, home health aide, or nurse's aid?

[^3]: 'Weight $(\mathrm{kg}) / h e i g h t(\mathrm{~m})^{2}$. If a participant's height was not measured, it was estimated from the average of two knee height measurements. The estimated height in $\mathrm{cm}=8488+183$ (knee height) 0.24 (age). Chumlea WC, Roche AF, Steinbaugh ML. Estimating stature from knee hetght for persons 60 to 90 years of age. J Am Geriatr Soc 1958,33 : 116-1 20.
 ${ }^{2}$ Descriptive statistics are based on weighted data.
 ${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
 415 th percentile or below, based on data from NHANES I for females age 70 to 74 years in Must A, Dallal GE, Dietz WH. (1991). Reference data for obesity: 85 th and 95 th percentiles of body mass index (wt/ht ${ }^{2}$) and triceps skinfold thickness. Am J Clin Nutr 53:839-846.
 ${ }^{5} 85$ th percentile or above, based on previous reference.

[^4]: (Women's Health and Aging Study, physical assessment, 1992-1995)
 ${ }^{1}$ All variables have less than 1% missing data. Results are based on non-missing data.
 ${ }^{2}$ Descriptive statistics are based on weighted data.
 ${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
 ${ }^{4} \mathrm{FEV}_{1} /$ predicted FEV .
 ${ }^{5} \mathrm{FVC} /$ predicted FVC.

[^5]: (Women's Health and Aging Study, physical assesssment, 19921995)
 ${ }^{1}$ Based on weighted data.

[^6]: ${ }^{1}$ Unless otherwise specified, all variables have less than 2% missing data. Results are based on non-missing data.
 ${ }^{2}$ Descriptive statistics are based on weighted data.
 ${ }^{3}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).
 ${ }^{4}$ Item from Hearing Handicap Inventory for the Elderly-Screening Version. Ventry IM, Weinstein B. (1982). The Hearing Handicap Inventory for the Elderly: A new tool. Ear Hear 3:128-134.
 ${ }^{5}$ Includes participants reporting no hearing problems in the first five items of this table.

[^7]: (Women's Health and Aging Study, baseline interview, 1992-1995)
 ${ }_{2}^{1}$ Descriptive statistics are based on weighted data.
 ${ }^{2}$ No ADL difficulty; disabled in two or more domains (see Chapter 1).

[^8]: *Owing to varying probabilities of selection (see section on sampling), entry corresponds to average weight of sampled persons in the given age group and replicate.

[^9]: *Age group is based on the survey-reported age.

[^10]: ${ }^{1}$ The term "jackknife replicate" should not be confused with the four "replicates" defined for WHAS. As described in this appendix, a jackknife replicate is simply a specially constructed subsample of the full WHAS sample.

[^11]: * Members of the Disease Ascertainment Working Group: Linda P. Fried, chair; Frederick Brancati, M. Chiara Corti, Luigi Ferrucci, Jack M. Guralnik, Kathy Helzlsouer, Marc C. Hochberg, Judith D. Kasper, Steven Kittner, Carol Morris, Marco Pahor, Marcel E. Salive, E. Ann Skinner, Elizabeth Solak, and Melvyn Tockman

[^12]: 1 Silent myocardial infarction, by ECG
 2 Five cases definite and symptomatic, 5 cases definite and asymptomatic
 ${ }^{3}$ Includirig definite asthma, emphysema or bronchitis

